File size: 15,932 Bytes
1871536
 
 
f5ce1a8
1871536
e84a43c
 
a6b51ba
e84a43c
6894abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd5e2c
6894abe
2cd5e2c
6894abe
 
 
 
 
 
 
 
 
 
 
 
 
9555332
 
6894abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd5e2c
 
 
6894abe
 
 
 
 
 
 
 
 
 
 
 
9555332
 
6894abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd5e2c
 
 
6894abe
 
 
 
 
 
 
 
 
 
 
 
9555332
 
6894abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd5e2c
 
 
6894abe
 
 
 
 
 
 
 
 
 
 
 
9555332
 
6894abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cd5e2c
 
6894abe
 
 
 
 
 
 
 
 
 
 
 
9555332
 
6894abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48de81e
703b8c7
 
48de81e
e84a43c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1947481
9e1e1d7
1947481
 
81f59b6
a92a969
 
81f59b6
043398a
81f59b6
a92a969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81f59b6
1947481
 
 
e8b4066
a92a969
043398a
a92a969
 
 
 
 
 
 
043398a
3646b59
1947481
e8b4066
9e1e1d7
1947481
 
81f59b6
1947481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f6c84
 
 
 
 
8bbc798
9555332
81f59b6
9555332
8bbc798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import streamlit as st
import requests
import json
import os
import pandas as pd
from sentence_transformers import CrossEncoder
import numpy as np
import re

from textwrap import dedent
import google.generativeai as genai


# Tool import
from crewai.tools.gemini_tools import GeminiSearchTools
from crewai.tools.mixtral_tools import MixtralSearchTools
from crewai.tools.zephyr_tools import ZephyrSearchTools
from crewai.tools.phi2_tools import Phi2SearchTools


# Google Langchain
from langchain_google_genai import GoogleGenerativeAI

#Crew imports
from crewai import Agent, Task, Crew, Process

# Retrieve API Key from Environment Variable
GOOGLE_AI_STUDIO = os.environ.get('GOOGLE_API_KEY')

# Ensure the API key is available
if not GOOGLE_AI_STUDIO:
    raise ValueError("API key not found. Please set the GOOGLE_AI_STUDIO2 environment variable.")

# Set gemini_llm
gemini_llm = GoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_AI_STUDIO)

# CrewAI +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

def crewai_process_gemini(research_topic):
    # Define your agents with roles and goals
    GeminiAgent = Agent(
        role='Summary Evaluator',
        goal='To learn how to manage her anxiety in social situations through group therapy.',
        backstory="""Skilled in running query evaluation""",
        verbose=True,
        allow_delegation=False,
        llm = gemini_llm,
        tools=[
                GeminiSearchTools.gemini_search
                   
      ]

    )


    # Create tasks for your agents
    task1 = Task(
        description=f"""From {research_topic} create your story by writing at least one sentence about each bullet point from each of the five scenes
         and make sure you have a transitional statement between scenes . BE VERBOSE.""",
        agent=GeminiAgent
    )

    # Instantiate your crew with a sequential process
    crew = Crew(
        agents=[GeminiAgent],
        tasks=[task1],
        verbose=2,
        process=Process.sequential
    )

    # Get your crew to work!
    result = crew.kickoff()
    
    return result



def crewai_process_mixtral_crazy(research_topic):
    # Define your agents with roles and goals
    MixtralCrazyAgent = Agent(
        role='Summary Evaluator',
        goal='Evaluate the summary using the HHEM-Victara Tuner',
        backstory="""Skilled in running query evaluation""",
        verbose=True,
        allow_delegation=False,
        llm = gemini_llm,
        tools=[
                MixtralSearchTools.mixtral_crazy      
      ]

    )


    # Create tasks for your agents
    task1 = Task(
        description=f"""From {research_topic} create your story by writing at least one sentence about each bullet point from each of the five scenes
         and make sure you have a transitional statement between scenes . BE VERBOSE.""",
        agent=MixtralCrazyAgent
    )

    # Instantiate your crew with a sequential process
    crew = Crew(
        agents=[MixtralCrazyAgent],
        tasks=[task1],
        verbose=2,
        process=Process.sequential
    )

    # Get your crew to work!
    result = crew.kickoff()
    
    return result


def crewai_process_mixtral_normal(research_topic):
    # Define your agents with roles and goals
    MixtralNormalAgent = Agent(
        role='Summary Evaluator',
        goal='Evaluate the summary using the HHEM-Victara Tuner',
        backstory="""Skilled in running query evaluation""",
        verbose=True,
        allow_delegation=False,
        llm = gemini_llm,
        tools=[
                MixtralSearchTools.mixtral_normal      
      ]

    )


    # Create tasks for your agents
    task1 = Task(
        description=f"""From {research_topic} create your story by writing at least one sentence about each bullet point from each of the five scenes
         and make sure you have a transitional statement between scenes . BE VERBOSE.""",
        agent=MixtralNormalAgent
    )

    # Instantiate your crew with a sequential process
    crew = Crew(
        agents=[MixtralNormalAgent],
        tasks=[task1],
        verbose=2,
        process=Process.sequential
    )

    # Get your crew to work!
    result = crew.kickoff()
    
    return result


def crewai_process_zephyr_normal(research_topic):
    # Define your agents with roles and goals
    ZephrNormalAgent = Agent(
        role='Summary Evaluator',
        goal='Evaluate the summary using the HHEM-Victara Tuner',
        backstory="""Skilled in running query evaluation""",
        verbose=True,
        allow_delegation=False,
        llm = gemini_llm,
        tools=[
                ZephyrSearchTools.zephyr_normal     
      ]

    )


    # Create tasks for your agents
    task1 = Task(
        description=f"""From {research_topic} create your story by writing at least one sentence about each bullet point from each of the five scenes
         and make sure you have a transitional statement between scenes . BE VERBOSE.""",
        agent=ZephrNormalAgent
    )

    # Instantiate your crew with a sequential process
    crew = Crew(
        agents=[ZephrNormalAgent],
        tasks=[task1],
        verbose=2,
        process=Process.sequential
    )

    # Get your crew to work!
    result = crew.kickoff()
    
    return result


def crewai_process_phi2(research_topic):
    # Define your agents with roles and goals
    Phi2Agent = Agent(
        role='Emily Mental Patient Graphic Designer Anxiety',
        goal='Evaluate the summary using the HHEM-Victara Tuner',
        backstory="""Skilled in running query evaluation""",
        verbose=True,
        allow_delegation=False,
        llm = gemini_llm,
        tools=[
                Phi2SearchTools.phi2_search     
      ]

    )


    # Create tasks for your agents
    task1 = Task(
        description=f"""From {research_topic} create your story by writing at least one sentence about each bullet point from each of the five scenes
         and make sure you have a transitional statement between scenes . BE VERBOSE.""",
        agent=Phi2Agent
    )

    # Instantiate your crew with a sequential process
    crew = Crew(
        agents=[Phi2Agent],
        tasks=[task1],
        verbose=2,
        process=Process.sequential
    )

    # Get your crew to work!
    result = crew.kickoff()
    
    return result





# Initialize the HHEM model +++++++++++++++++++++++++++++++++++++++++++++++
model = CrossEncoder('vectara/hallucination_evaluation_model')

# Function to compute HHEM scores
def compute_hhem_scores(texts, summary):
    pairs = [[text, summary] for text in texts]
    scores = model.predict(pairs)
    return scores

# Define the Vectara query function
def vectara_query(query: str, config: dict):
    corpus_key = [{
        "customerId": config["customer_id"],
        "corpusId": config["corpus_id"],
        "lexicalInterpolationConfig": {"lambda": config.get("lambda_val", 0.5)},
    }]
    data = {
        "query": [{
            "query": query,
            "start": 0,
            "numResults": config.get("top_k", 10),
            "contextConfig": {
                "sentencesBefore": 2,
                "sentencesAfter": 2,
            },
            "corpusKey": corpus_key,
            "summary": [{
                "responseLang": "eng",
                "maxSummarizedResults": 5,
            }]
        }]
    }

    headers = {
        "x-api-key": config["api_key"],
        "customer-id": config["customer_id"],
        "Content-Type": "application/json",
    }
    response = requests.post(
        headers=headers,
        url="https://api.vectara.io/v1/query",
        data=json.dumps(data),
    )
    if response.status_code != 200:
        st.error(f"Query failed (code {response.status_code}, reason {response.reason}, details {response.text})")
        return [], ""

    result = response.json()
    responses = result["responseSet"][0]["response"]
    summary = result["responseSet"][0]["summary"][0]["text"]

    res = [[r['text'], r['score']] for r in responses]
    return res, summary


# Create the main app with three tabs
tab1, tab2, tab3, tab4 = st.tabs(["Synthetic Data", "Data Query", "HHEM-Vectara Query Tuner", "Model Evaluation"])

with tab1:

    st.header("Synthetic Data")
    st.link_button("Create Synthetic Medical Data", "https://chat.openai.com/g/g-XyHciw52w-synthetic-clinical-data")

    text1 = """You are an experienced medical doctor with extensive experience in creating medical records, when clicking "Create Data" create synthetic data with the following Elements similar to the given Example following the Condition. If a number is entered product that many synthetic cases varying the details, if not just produce one case.

    Elements: Chief Complaint, History of Present Illness, Past Medical History, Medication History, Social History, Family History, Review of Systems, Physical Examination, Diagnostic Test Results, Assessment and Plan, Problem List
    
    Condition:  allow for a variety of different cases and make sure the illnesses are consistent. BE VERBOSE, PUT IN JSON FORMAT.
    
    Example: [
    Case Number: 1001
    Chief Complaint (CC): "I've been having chest pain for the past two hours."
    
    History of Present Illness (HPI): Mr. Michael Smith, a 65-year-old male with a history of hypertension and smoking, presents with acute, substernal chest pain that began 2 hours ago while resting. Describes the pain as "pressure-like," rated 7/10, radiating to the left arm. Denies nausea, vomiting, or shortness of breath. Reports similar, but milder, episodes over the past month, which he attributed to indigestion. No previous evaluation for this pain. Takes aspirin occasionally for headaches.
    
    Past Medical History (PMH):
    
    Hypertension, diagnosed 10 years ago, managed with lisinopril.
    Type 2 diabetes mellitus, diagnosed 5 years ago, managed with metformin.
    No known drug allergies.
    Medication History:
    
    Lisinopril 20 mg daily.
    Metformin 500 mg twice daily.
    Aspirin as needed for headaches.
    Social History (SH):
    
    Retired mechanic.
    Smokes half a pack of cigarettes daily for the past 40 years.
    Occasional alcohol use, denies illicit drug use.
    Lives with spouse, has two adult children.
    Family History (FH):
    
    Father died of a heart attack at age 70.
    Mother has type 2 diabetes and hypertension.
    One brother, healthy.
    Review of Systems (ROS): Negative for fever, cough, dyspnea, palpitations, abdominal pain, diarrhea, constipation, dysuria, or rash. Positive for recent episodes of mild, non-exertional chest discomfort as noted in HPI.
    
    Physical Examination (PE):
    
    General: Awake, alert, appears mildly distressed due to pain.
    Vital Signs: BP 160/90 mmHg, HR 88 bpm, RR 16/min, Temp 98.6°F (37°C), O2 Sat 98% on room air.
    HEENT: Pupils equal, round, reactive to light. Mucous membranes moist.
    Cardiovascular: Regular rate and rhythm, no murmurs, rubs, or gallops. No peripheral edema.
    Respiratory: Clear to auscultation bilaterally, no wheezes, rales, or rhonchi.
    Abdomen: Soft, non-tender, non-distended, no guarding or rebound tenderness.
    Extremities: No cyanosis, clubbing, or edema.
    Diagnostic Test Results:
    
    ECG shows ST-segment elevation in leads II, III, and aVF.
    Troponin I level is elevated at 0.5 ng/mL (normal <0.04 ng/mL).
    Assessment and Plan:
    
    Assessment: Acute ST-elevation myocardial infarction (STEMI), likely secondary to coronary artery disease, given risk factors (hypertension, smoking, family history).
    Plan:
    Immediate cardiology consultation for possible cardiac catheterization.
    Start aspirin 325 mg, clopidogrel 600 mg loading dose, and heparin infusion per acute coronary syndrome protocol.
    Monitor vital signs and cardiac rhythm closely in the intensive care unit.
    Adjust hypertension and diabetes medications as needed.
    Smoking cessation counseling and referral to a smoking cessation program.
    Patient education about heart disease, importance of medication adherence, and lifestyle modifications.
    Plan for discharge with outpatient follow-up in cardiology clinic.
    Problem List:
    
    Acute ST-elevation myocardial infarction (STEMI).
    Hypertension.
    Type 2 diabetes mellitus.
    Smoking.
    ]
    
    """
    
    
    st.text_area('Algorithm:', text1, height=400)
 

with tab2:
    st.header("Data Query")
    st.link_button("Query & Summarize Data", "https://chat.openai.com/g/g-9tWqg4gRY-explore-summarize-medical-data")

    text2 = """When clicking on "Search Data", request the Case Number.  Search knowledge  for SearchMyData where XXXX is the number given and give the Elements under SearchMyData .  DO NOT SEARCH THE WEB.

    Elements: Case Number: XXXX, Chief Complaint (CC), History of Present Illness (HPI), Past Medical History (PMH), Medication History, Social History (SH), Family History (FH), Review of Systems (ROS), Physical Examination (PE), Diagnostic Test Results, Assessment and Plan, Problem List
    
    SearchMyData: "Case Number": XXXX, "Chief Complaint (CC)":
    
    """
    
    st.text_area('Algorithm:', text2, height=250)
   
with tab3:
    
    st.header("HHEM-Vectara Query Tuner")
    
    # User inputs
    query = st.text_area("Enter your text for query tuning", "", height=100)
    lambda_val = st.slider("Lambda Value", min_value=0.0, max_value=1.0, value=0.5)
    top_k = st.number_input("Top K Results", min_value=1, max_value=50, value=10)
    
    
    if st.button("Query Vectara"):
        config = {
    
            "api_key": os.environ.get("VECTARA_API_KEY", ""),
            "customer_id": os.environ.get("VECTARA_CUSTOMER_ID", ""),
            "corpus_id": os.environ.get("VECTARA_CORPUS_ID", ""),      
    
            "lambda_val": lambda_val,
            "top_k": top_k,
        }
    
        results, summary = vectara_query(query, config)
    
        if results:
            st.subheader("Summary")
            st.write(summary)
            
            st.subheader("Top Results")
            
            # Extract texts from results
            texts = [r[0] for r in results[:5]]
            
            # Compute HHEM scores
            scores = compute_hhem_scores(texts, summary)
            
            # Prepare and display the dataframe
            df = pd.DataFrame({'Fact': texts, 'HHEM Score': scores})
            st.dataframe(df)
        else:
            st.write("No results found.")

with tab4:
    
    st.header("Model Evaluation")

    # User input for the research topic
    #research_topic = st.text_area('Enter your research topic:', '', height=100)

    research_topic = text1

    # Selection box for the function to execute
    process_selection = st.selectbox(
        'Choose the process to run:',
        ('crewai_process_gemini', 'crewai_process_mixtral_crazy', 'crewai_process_mixtral_normal', 'crewai_process_zephyr_normal', 'crewai_process_phi2')
    )

    # Button to execute the chosen function
    if st.button('Run Process'):
        if research_topic:  # Ensure there's a topic provided
            if process_selection == 'crewai_process_gemini':
                result = crewai_process_gemini(research_topic)
            elif process_selection == 'crewai_process_mixtral_crazy':
                result = crewai_process_mixtral_crazy(research_topic)
            elif process_selection == 'crewai_process_mixtral_normal':
                result = crewai_process_mixtral_normal(research_topic)
            elif process_selection == 'crewai_process_zephyr_normal':
                result = crewai_process_zephyr_normal(research_topic)
            elif process_selection == 'crewai_process_phi2':
                result = crewai_process_phi2(research_topic)
            st.write(result)
        else:
            st.warning('Please enter a research topic.')