Spaces:
Runtime error
Runtime error
import uuid | |
from typing import Any, List, Optional | |
from langchain.agents.agent import RunnableAgent | |
from langchain.agents.format_scratchpad import format_log_to_str | |
from langchain.memory import ConversationSummaryMemory | |
from langchain.tools.render import render_text_description | |
from langchain_core.runnables.config import RunnableConfig | |
from langchain_openai import ChatOpenAI | |
from pydantic import ( | |
UUID4, | |
BaseModel, | |
ConfigDict, | |
Field, | |
InstanceOf, | |
PrivateAttr, | |
field_validator, | |
model_validator, | |
) | |
from pydantic_core import PydanticCustomError | |
from crewai.agents import ( | |
CacheHandler, | |
CrewAgentExecutor, | |
CrewAgentOutputParser, | |
ToolsHandler, | |
) | |
from crewai.utilities import I18N, Logger, Prompts, RPMController | |
class Agent(BaseModel): | |
"""Represents an agent in a system. | |
Each agent has a role, a goal, a backstory, and an optional language model (llm). | |
The agent can also have memory, can operate in verbose mode, and can delegate tasks to other agents. | |
Attributes: | |
agent_executor: An instance of the CrewAgentExecutor class. | |
role: The role of the agent. | |
goal: The objective of the agent. | |
backstory: The backstory of the agent. | |
llm: The language model that will run the agent. | |
max_iter: Maximum number of iterations for an agent to execute a task. | |
memory: Whether the agent should have memory or not. | |
max_rpm: Maximum number of requests per minute for the agent execution to be respected. | |
verbose: Whether the agent execution should be in verbose mode. | |
allow_delegation: Whether the agent is allowed to delegate tasks to other agents. | |
tools: Tools at agents disposal | |
""" | |
__hash__ = object.__hash__ # type: ignore | |
_logger: Logger = PrivateAttr() | |
_rpm_controller: RPMController = PrivateAttr(default=None) | |
_request_within_rpm_limit: Any = PrivateAttr(default=None) | |
model_config = ConfigDict(arbitrary_types_allowed=True) | |
id: UUID4 = Field( | |
default_factory=uuid.uuid4, | |
frozen=True, | |
description="Unique identifier for the object, not set by user.", | |
) | |
role: str = Field(description="Role of the agent") | |
goal: str = Field(description="Objective of the agent") | |
backstory: str = Field(description="Backstory of the agent") | |
max_rpm: Optional[int] = Field( | |
default=None, | |
description="Maximum number of requests per minute for the agent execution to be respected.", | |
) | |
memory: bool = Field( | |
default=True, description="Whether the agent should have memory or not" | |
) | |
verbose: bool = Field( | |
default=False, description="Verbose mode for the Agent Execution" | |
) | |
allow_delegation: bool = Field( | |
default=True, description="Allow delegation of tasks to agents" | |
) | |
tools: List[Any] = Field( | |
default_factory=list, description="Tools at agents disposal" | |
) | |
max_iter: Optional[int] = Field( | |
default=15, description="Maximum iterations for an agent to execute a task" | |
) | |
agent_executor: InstanceOf[CrewAgentExecutor] = Field( | |
default=None, description="An instance of the CrewAgentExecutor class." | |
) | |
tools_handler: InstanceOf[ToolsHandler] = Field( | |
default=None, description="An instance of the ToolsHandler class." | |
) | |
cache_handler: InstanceOf[CacheHandler] = Field( | |
default=CacheHandler(), description="An instance of the CacheHandler class." | |
) | |
i18n: I18N = Field(default=I18N(), description="Internationalization settings.") | |
llm: Any = Field( | |
default_factory=lambda: ChatOpenAI( | |
model="gpt-4", | |
), | |
description="Language model that will run the agent.", | |
) | |
def _deny_user_set_id(cls, v: Optional[UUID4]) -> None: | |
if v: | |
raise PydanticCustomError( | |
"may_not_set_field", "This field is not to be set by the user.", {} | |
) | |
def set_private_attrs(self): | |
"""Set private attributes.""" | |
self._logger = Logger(self.verbose) | |
if self.max_rpm and not self._rpm_controller: | |
self._rpm_controller = RPMController( | |
max_rpm=self.max_rpm, logger=self._logger | |
) | |
return self | |
def check_agent_executor(self) -> "Agent": | |
"""Check if the agent executor is set.""" | |
if not self.agent_executor: | |
self.set_cache_handler(self.cache_handler) | |
return self | |
def execute_task( | |
self, | |
task: str, | |
context: Optional[str] = None, | |
tools: Optional[List[Any]] = None, | |
) -> str: | |
"""Execute a task with the agent. | |
Args: | |
task: Task to execute. | |
context: Context to execute the task in. | |
tools: Tools to use for the task. | |
Returns: | |
Output of the agent | |
""" | |
if context: | |
task = self.i18n.slice("task_with_context").format( | |
task=task, context=context | |
) | |
tools = tools or self.tools | |
self.agent_executor.tools = tools | |
result = self.agent_executor.invoke( | |
{ | |
"input": task, | |
"tool_names": self.__tools_names(tools), | |
"tools": render_text_description(tools), | |
}, | |
RunnableConfig(callbacks=[self.tools_handler]), | |
)["output"] | |
if self.max_rpm: | |
self._rpm_controller.stop_rpm_counter() | |
return result | |
def set_cache_handler(self, cache_handler: CacheHandler) -> None: | |
"""Set the cache handler for the agent. | |
Args: | |
cache_handler: An instance of the CacheHandler class. | |
""" | |
self.cache_handler = cache_handler | |
self.tools_handler = ToolsHandler(cache=self.cache_handler) | |
self._create_agent_executor() | |
def set_rpm_controller(self, rpm_controller: RPMController) -> None: | |
"""Set the rpm controller for the agent. | |
Args: | |
rpm_controller: An instance of the RPMController class. | |
""" | |
if not self._rpm_controller: | |
self._rpm_controller = rpm_controller | |
self._create_agent_executor() | |
def _create_agent_executor(self) -> None: | |
"""Create an agent executor for the agent. | |
Returns: | |
An instance of the CrewAgentExecutor class. | |
""" | |
agent_args = { | |
"input": lambda x: x["input"], | |
"tools": lambda x: x["tools"], | |
"tool_names": lambda x: x["tool_names"], | |
"agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]), | |
} | |
executor_args = { | |
"i18n": self.i18n, | |
"tools": self.tools, | |
"verbose": self.verbose, | |
"handle_parsing_errors": True, | |
"max_iterations": self.max_iter, | |
} | |
if self._rpm_controller: | |
executor_args["request_within_rpm_limit"] = ( | |
self._rpm_controller.check_or_wait | |
) | |
if self.memory: | |
summary_memory = ConversationSummaryMemory( | |
llm=self.llm, input_key="input", memory_key="chat_history" | |
) | |
executor_args["memory"] = summary_memory | |
agent_args["chat_history"] = lambda x: x["chat_history"] | |
prompt = Prompts(i18n=self.i18n).task_execution_with_memory() | |
else: | |
prompt = Prompts(i18n=self.i18n).task_execution() | |
execution_prompt = prompt.partial( | |
goal=self.goal, | |
role=self.role, | |
backstory=self.backstory, | |
) | |
bind = self.llm.bind(stop=[self.i18n.slice("observation")]) | |
inner_agent = ( | |
agent_args | |
| execution_prompt | |
| bind | |
| CrewAgentOutputParser( | |
tools_handler=self.tools_handler, | |
cache=self.cache_handler, | |
i18n=self.i18n, | |
) | |
) | |
self.agent_executor = CrewAgentExecutor( | |
agent=RunnableAgent(runnable=inner_agent), **executor_args | |
) | |
def __tools_names(tools) -> str: | |
return ", ".join([t.name for t in tools]) | |