Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
import torch.nn as nn | |
import torch.optim as optim | |
import torchvision | |
import torchvision.transforms as transforms | |
import matplotlib.pyplot as plt | |
# Define the neural network | |
class Net(nn.Module): | |
def __init__(self): | |
super(Net, self).__init__() | |
self.fc1 = nn.Linear(28 * 28, 128) | |
self.fc2 = nn.Linear(128, 64) | |
self.fc3 = nn.Linear(64, 10) | |
def forward(self, x): | |
x = x.view(-1, 28 * 28) | |
x = torch.relu(self.fc1(x)) | |
x = torch.relu(self.fc2(x)) | |
x = self.fc3(x) | |
return x | |
# Function to train the model | |
def train_model(num_epochs): | |
# Define transformations | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.5,), (0.5,)) | |
]) | |
# Load datasets | |
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) | |
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) | |
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) | |
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False) | |
# Initialize the network, loss function, and optimizer | |
net = Net() | |
criterion = nn.CrossEntropyLoss() | |
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9) | |
# Track loss over epochs | |
loss_values = [] | |
# Training loop | |
for epoch in range(num_epochs): | |
running_loss = 0.0 | |
for i, data in enumerate(trainloader, 0): | |
inputs, labels = data | |
optimizer.zero_grad() | |
outputs = net(inputs) | |
loss = criterion(outputs, labels) | |
loss.backward() | |
optimizer.step() | |
running_loss += loss.item() | |
# Append average loss for this epoch | |
loss_values.append(running_loss / len(trainloader)) | |
st.write(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader):.3f}') | |
st.write('Finished Training') | |
# Plot the loss values | |
plt.figure(figsize=(10, 5)) | |
plt.plot(range(1, num_epochs + 1), loss_values, marker='o') | |
plt.title('Training Loss over Epochs') | |
plt.xlabel('Epoch') | |
plt.ylabel('Loss') | |
st.pyplot(plt) | |
# Evaluate the network on the test data | |
correct = 0 | |
total = 0 | |
with torch.no_grad(): | |
for data in testloader: | |
images, labels = data | |
outputs = net(images) | |
_, predicted = torch.max(outputs.data, 1) | |
total += labels.size(0) | |
correct += (predicted == labels).sum().item() | |
st.write(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%') | |
# Streamlit interface | |
st.title('MNIST Digit Classification with PyTorch') | |
num_epochs = st.number_input('Enter number of epochs:', min_value=1, max_value=100, value=10) | |
if st.button('Run'): | |
train_model(num_epochs) | |