pytorch / pages /15_Simple_CNN.py
eaglelandsonce's picture
Rename pages/1_Simple_CNN.py to pages/15_Simple_CNN.py
4b47b74 verified
raw
history blame
3.67 kB
import streamlit as st
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
# Define the CNN
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(32 * 8 * 8, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 32 * 8 * 8)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# Function to train the model
def train_model(num_epochs):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
CIFAR10_CLASSES = [
'plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck'
]
net = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
loss_values = []
st.write("Training the model...")
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
loss_values.append(running_loss / len(trainloader))
st.write(f'Epoch {epoch + 1}, Loss: {running_loss / len(trainloader):.3f}')
st.write('Finished Training')
# Plot the loss values
plt.figure(figsize=(10, 5))
plt.plot(range(1, num_epochs + 1), loss_values, marker='o')
plt.title('Training Loss over Epochs')
plt.xlabel('Epoch')
plt.ylabel('Loss')
st.pyplot(plt)
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
st.write(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')
# Visualize some test images and their predictions
def imshow(img):
img = img / 2 + 0.5 # Unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
dataiter = iter(testloader)
images, labels = next(dataiter)
imshow(torchvision.utils.make_grid(images))
outputs = net(images)
_, predicted = torch.max(outputs, 1)
st.write('Predicted: ', ' '.join(f'{CIFAR10_CLASSES[predicted[j]]:5s}' for j in range(8)))
st.write('Actual: ', ' '.join(f'{CIFAR10_CLASSES[labels[j]]:5s}' for j in range(8)))
st.pyplot()
# Streamlit interface
st.title('CIFAR-10 Classification with PyTorch')
num_epochs = st.number_input('Enter number of epochs:', min_value=1, max_value=100, value=10)
if st.button('Run'):
train_model(num_epochs)