Spaces:
Runtime error
Runtime error
ealvaradob
commited on
Commit
β’
4e0a19f
1
Parent(s):
2810f97
Create false_positive_rate.py
Browse files- false_positive_rate.py +58 -0
false_positive_rate.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
from sklearn.metrics import confusion_matrix
|
3 |
+
import evaluate
|
4 |
+
|
5 |
+
_DESCRIPTION = """
|
6 |
+
FPR is the proportion of negative cases incorrectly identified as positive cases in the data (i.e. the probability that false alerts will be raised). It is defined as:
|
7 |
+
FPR = FP / (FP + TN)
|
8 |
+
Where:
|
9 |
+
TN: True negative
|
10 |
+
FP: False positive
|
11 |
+
"""
|
12 |
+
|
13 |
+
|
14 |
+
_KWARGS_DESCRIPTION = """
|
15 |
+
Args:
|
16 |
+
predictions (`list` of `int`): Predicted labels.
|
17 |
+
references (`list` of `int`): Ground truth (correct) target values.
|
18 |
+
normalize (`boolean`): Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized.
|
19 |
+
sample_weight (`list` of `float`): Sample weights. Defaults to None.
|
20 |
+
Returns:
|
21 |
+
false positive rate (`float` or `int`): FPR score. Minimum possible value is 0. Maximum possible value is 1.0.
|
22 |
+
"""
|
23 |
+
|
24 |
+
_CITATION = """
|
25 |
+
@misc{ enwiki:1178431122,
|
26 |
+
author = "{Wikipedia contributors}",
|
27 |
+
title = "False positives and false negatives --- {Wikipedia}{,} The Free Encyclopedia",
|
28 |
+
year = "2023",
|
29 |
+
url = "https://en.wikipedia.org/w/index.php?title=False_positives_and_false_negatives&oldid=1178431122",
|
30 |
+
note = "[Online; accessed 17-November-2023]"
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
35 |
+
class FPR(evaluate.Metric):
|
36 |
+
def _info(self):
|
37 |
+
return evaluate.MetricInfo(
|
38 |
+
description=_DESCRIPTION,
|
39 |
+
citation=_CITATION,
|
40 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
41 |
+
features=datasets.Features(
|
42 |
+
{
|
43 |
+
"predictions": datasets.Sequence(datasets.Value("int32")),
|
44 |
+
"references": datasets.Sequence(datasets.Value("int32")),
|
45 |
+
}
|
46 |
+
if self.config_name == "multilabel"
|
47 |
+
else {
|
48 |
+
"predictions": datasets.Value("int32"),
|
49 |
+
"references": datasets.Value("int32"),
|
50 |
+
}
|
51 |
+
),
|
52 |
+
reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html"],
|
53 |
+
)
|
54 |
+
|
55 |
+
def _compute(self, predictions, references, normalize=None, sample_weight=None):
|
56 |
+
tn, fp, fn, tp = confusion_matrix(references, predictions, normalize=normalize, sample_weight=sample_weight).ravel()
|
57 |
+
fpr = fp / (fp + tn)
|
58 |
+
return {"false_positive_rate": fpr}
|