File size: 12,724 Bytes
506c93a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from toolbox import CatchException, update_ui, get_conf, select_api_key, get_log_folder
from crazy_functions.multi_stage.multi_stage_utils import GptAcademicState


def gen_image(llm_kwargs, prompt, resolution="1024x1024", model="dall-e-2", quality=None, style=None):
    import requests, json, time, os
    from request_llms.bridge_all import model_info

    proxies = get_conf('proxies')
    # Set up OpenAI API key and model 
    api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
    chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
    # 'https://api.openai.com/v1/chat/completions'
    img_endpoint = chat_endpoint.replace('chat/completions','images/generations')
    # # Generate the image
    url = img_endpoint
    headers = {
        'Authorization': f"Bearer {api_key}",
        'Content-Type': 'application/json'
    }
    data = {
        'prompt': prompt,
        'n': 1,
        'size': resolution,
        'model': model,
        'response_format': 'url'
    }
    if quality is not None:
        data['quality'] = quality
    if style is not None:
        data['style'] = style
    response = requests.post(url, headers=headers, json=data, proxies=proxies)
    print(response.content)
    try:
        image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
    except:
        raise RuntimeError(response.content.decode())
    # 文件保存到本地
    r = requests.get(image_url, proxies=proxies)
    file_path = f'{get_log_folder()}/image_gen/'
    os.makedirs(file_path, exist_ok=True)
    file_name = 'Image' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.png'
    with open(file_path+file_name, 'wb+') as f: f.write(r.content)


    return image_url, file_path+file_name


def edit_image(llm_kwargs, prompt, image_path, resolution="1024x1024", model="dall-e-2"):
    import requests, json, time, os
    from request_llms.bridge_all import model_info

    proxies = get_conf('proxies')
    api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])
    chat_endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
    # 'https://api.openai.com/v1/chat/completions'
    img_endpoint = chat_endpoint.replace('chat/completions','images/edits')
    # # Generate the image
    url = img_endpoint
    n = 1
    headers = {
        'Authorization': f"Bearer {api_key}",
    }
    make_transparent(image_path, image_path+'.tsp.png')
    make_square_image(image_path+'.tsp.png', image_path+'.tspsq.png')
    resize_image(image_path+'.tspsq.png', image_path+'.ready.png', max_size=1024)
    image_path = image_path+'.ready.png'
    with open(image_path, 'rb') as f:
        file_content = f.read()
        files = {
            'image': (os.path.basename(image_path), file_content),
            # 'mask': ('mask.png', open('mask.png', 'rb'))
            'prompt':   (None, prompt),
            "n":        (None, str(n)),
            'size':     (None, resolution),
        }

    response = requests.post(url, headers=headers, files=files, proxies=proxies)
    print(response.content)
    try:
        image_url = json.loads(response.content.decode('utf8'))['data'][0]['url']
    except:
        raise RuntimeError(response.content.decode())
    # 文件保存到本地
    r = requests.get(image_url, proxies=proxies)
    file_path = f'{get_log_folder()}/image_gen/'
    os.makedirs(file_path, exist_ok=True)
    file_name = 'Image' + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.png'
    with open(file_path+file_name, 'wb+') as f: f.write(r.content)


    return image_url, file_path+file_name


@CatchException
def 图片生成_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
    """
    txt             输入栏用户输入的文本,例如需要翻译的一段话,再例如一个包含了待处理文件的路径
    llm_kwargs      gpt模型参数,如温度和top_p等,一般原样传递下去就行
    plugin_kwargs   插件模型的参数,暂时没有用武之地
    chatbot         聊天显示框的句柄,用于显示给用户
    history         聊天历史,前情提要
    system_prompt   给gpt的静默提醒
    user_request    当前用户的请求信息(IP地址等)
    """
    history = []    # 清空历史,以免输入溢出
    if prompt.strip() == "":
        chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
        return
    chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
    if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
    resolution = plugin_kwargs.get("advanced_arg", '1024x1024')
    image_url, image_path = gen_image(llm_kwargs, prompt, resolution)
    chatbot.append([prompt,  
        f'图像中转网址: <br/>`{image_url}`<br/>'+
        f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
        f'本地文件地址: <br/>`{image_path}`<br/>'+
        f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
    ])
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新


@CatchException
def 图片生成_DALLE3(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
    history = []    # 清空历史,以免输入溢出
    if prompt.strip() == "":
        chatbot.append((prompt, "[Local Message] 图像生成提示为空白,请在“输入区”输入图像生成提示。"))
        yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
        return
    chatbot.append(("您正在调用“图像生成”插件。", "[Local Message] 生成图像, 请先把模型切换至gpt-*。如果中文Prompt效果不理想, 请尝试英文Prompt。正在处理中 ....."))
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 由于请求gpt需要一段时间,我们先及时地做一次界面更新
    if ("advanced_arg" in plugin_kwargs) and (plugin_kwargs["advanced_arg"] == ""): plugin_kwargs.pop("advanced_arg")
    resolution_arg = plugin_kwargs.get("advanced_arg", '1024x1024-standard-vivid').lower()
    parts = resolution_arg.split('-')
    resolution = parts[0] # 解析分辨率
    quality = 'standard' # 质量与风格默认值
    style = 'vivid'
    # 遍历检查是否有额外参数
    for part in parts[1:]:
        if part in ['hd', 'standard']:
            quality = part
        elif part in ['vivid', 'natural']:
            style = part
    image_url, image_path = gen_image(llm_kwargs, prompt, resolution, model="dall-e-3", quality=quality, style=style)
    chatbot.append([prompt,  
        f'图像中转网址: <br/>`{image_url}`<br/>'+
        f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
        f'本地文件地址: <br/>`{image_path}`<br/>'+
        f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
    ])
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新


class ImageEditState(GptAcademicState):
    # 尚未完成
    def get_image_file(self, x):
        import os, glob
        if len(x) == 0:             return False, None
        if not os.path.exists(x):   return False, None
        if x.endswith('.png'):      return True, x
        file_manifest = [f for f in glob.glob(f'{x}/**/*.png', recursive=True)]
        confirm = (len(file_manifest) >= 1 and file_manifest[0].endswith('.png') and os.path.exists(file_manifest[0]))
        file = None if not confirm else file_manifest[0]
        return confirm, file
    
    def lock_plugin(self, chatbot):
        chatbot._cookies['lock_plugin'] = 'crazy_functions.图片生成->图片修改_DALLE2'
        self.dump_state(chatbot)

    def unlock_plugin(self, chatbot):
        self.reset()
        chatbot._cookies['lock_plugin'] = None
        self.dump_state(chatbot)

    def get_resolution(self, x):
        return (x in ['256x256', '512x512', '1024x1024']), x

    def get_prompt(self, x):
        confirm = (len(x)>=5) and (not self.get_resolution(x)[0]) and (not self.get_image_file(x)[0])
        return confirm, x

    def reset(self):
        self.req = [
            {'value':None, 'description': '请先上传图像(必须是.png格式), 然后再次点击本插件',                      'verify_fn': self.get_image_file},
            {'value':None, 'description': '请输入分辨率,可选:256x256, 512x512 或 1024x1024, 然后再次点击本插件',   'verify_fn': self.get_resolution},
            {'value':None, 'description': '请输入修改需求,建议您使用英文提示词, 然后再次点击本插件',                 'verify_fn': self.get_prompt},
        ]
        self.info = ""

    def feed(self, prompt, chatbot):
        for r in self.req:
            if r['value'] is None:
                confirm, res = r['verify_fn'](prompt)
                if confirm:
                    r['value'] = res
                    self.dump_state(chatbot)
                    break
        return self

    def next_req(self):
        for r in self.req:
            if r['value'] is None:
                return r['description']
        return "已经收集到所有信息"

    def already_obtained_all_materials(self):
        return all([x['value'] is not None for x in self.req])

@CatchException
def 图片修改_DALLE2(prompt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, user_request):
    # 尚未完成
    history = []    # 清空历史
    state = ImageEditState.get_state(chatbot, ImageEditState)
    state = state.feed(prompt, chatbot)
    state.lock_plugin(chatbot)
    if not state.already_obtained_all_materials():
        chatbot.append(["图片修改\n\n1. 上传图片(图片中需要修改的位置用橡皮擦擦除为纯白色,即RGB=255,255,255)\n2. 输入分辨率 \n3. 输入修改需求", state.next_req()])
        yield from update_ui(chatbot=chatbot, history=history)
        return

    image_path = state.req[0]['value']
    resolution = state.req[1]['value']
    prompt = state.req[2]['value']
    chatbot.append(["图片修改, 执行中", f"图片:`{image_path}`<br/>分辨率:`{resolution}`<br/>修改需求:`{prompt}`"])
    yield from update_ui(chatbot=chatbot, history=history)
    image_url, image_path = edit_image(llm_kwargs, prompt, image_path, resolution)
    chatbot.append([prompt,
        f'图像中转网址: <br/>`{image_url}`<br/>'+
        f'中转网址预览: <br/><div align="center"><img src="{image_url}"></div>'
        f'本地文件地址: <br/>`{image_path}`<br/>'+
        f'本地文件预览: <br/><div align="center"><img src="file={image_path}"></div>'
    ])
    yield from update_ui(chatbot=chatbot, history=history) # 刷新界面 界面更新
    state.unlock_plugin(chatbot)

def make_transparent(input_image_path, output_image_path):
    from PIL import Image
    image = Image.open(input_image_path)
    image = image.convert("RGBA")
    data = image.getdata()
    new_data = []
    for item in data:
        if item[0] == 255 and item[1] == 255 and item[2] == 255:
            new_data.append((255, 255, 255, 0))
        else:
            new_data.append(item)
    image.putdata(new_data)
    image.save(output_image_path, "PNG")

def resize_image(input_path, output_path, max_size=1024):
    from PIL import Image
    with Image.open(input_path) as img:
        width, height = img.size
        if width > max_size or height > max_size:
            if width >= height:
                new_width = max_size
                new_height = int((max_size / width) * height)
            else:
                new_height = max_size
                new_width = int((max_size / height) * width)

            resized_img = img.resize(size=(new_width, new_height))
            resized_img.save(output_path)
        else:
            img.save(output_path)

def make_square_image(input_path, output_path):
    from PIL import Image
    with Image.open(input_path) as img:
        width, height = img.size
        size = max(width, height)
        new_img = Image.new("RGBA", (size, size), color="black")
        new_img.paste(img, ((size - width) // 2, (size - height) // 2))
        new_img.save(output_path)