File size: 15,969 Bytes
506c93a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
"""
    该文件中主要包含三个函数

    不具备多线程能力的函数:
    1. predict: 正常对话时使用,具备完备的交互功能,不可多线程

    具备多线程调用能力的函数
    2. predict_no_ui_long_connection:支持多线程
"""

import json
import time
import logging
import requests
import base64
import os
import glob
from toolbox import get_conf, update_ui, is_any_api_key, select_api_key, what_keys, clip_history, trimmed_format_exc, is_the_upload_folder, \
    update_ui_lastest_msg, get_max_token, encode_image, have_any_recent_upload_image_files


proxies, TIMEOUT_SECONDS, MAX_RETRY, API_ORG, AZURE_CFG_ARRAY = \
    get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'API_ORG', 'AZURE_CFG_ARRAY')

timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
                  '网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'


def report_invalid_key(key):
    if get_conf("BLOCK_INVALID_APIKEY"): 
        # 实验性功能,自动检测并屏蔽失效的KEY,请勿使用
        from request_llms.key_manager import ApiKeyManager
        api_key = ApiKeyManager().add_key_to_blacklist(key)

def get_full_error(chunk, stream_response):
    """
        获取完整的从Openai返回的报错
    """
    while True:
        try:
            chunk += next(stream_response)
        except:
            break
    return chunk

def decode_chunk(chunk):
    # 提前读取一些信息 (用于判断异常)
    chunk_decoded = chunk.decode()
    chunkjson = None
    has_choices = False
    choice_valid = False
    has_content = False
    has_role = False
    try: 
        chunkjson = json.loads(chunk_decoded[6:])
        has_choices = 'choices' in chunkjson
        if has_choices: choice_valid = (len(chunkjson['choices']) > 0)
        if has_choices and choice_valid: has_content = "content" in chunkjson['choices'][0]["delta"]
        if has_choices and choice_valid: has_role = "role" in chunkjson['choices'][0]["delta"]
    except: 
        pass
    return chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role

from functools import lru_cache
@lru_cache(maxsize=32)
def verify_endpoint(endpoint):
    """
        检查endpoint是否可用
    """
    return endpoint

def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
    raise NotImplementedError


def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):

    have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)

    if is_any_api_key(inputs):
        chatbot._cookies['api_key'] = inputs
        chatbot.append(("输入已识别为openai的api_key", what_keys(inputs)))
        yield from update_ui(chatbot=chatbot, history=history, msg="api_key已导入") # 刷新界面
        return
    elif not is_any_api_key(chatbot._cookies['api_key']):
        chatbot.append((inputs, "缺少api_key。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。"))
        yield from update_ui(chatbot=chatbot, history=history, msg="缺少api_key") # 刷新界面
        return
    if not have_recent_file:
        chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写"))
        yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
        return
    if os.path.exists(inputs):
        chatbot.append((inputs, "已经接收到您上传的文件,您不需要再重复强调该文件的路径了,请直接输入您的问题。"))
        yield from update_ui(chatbot=chatbot, history=history, msg="等待指令") # 刷新界面
        return


    user_input = inputs
    if additional_fn is not None:
        from core_functional import handle_core_functionality
        inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)

    raw_input = inputs
    logging.info(f'[raw_input] {raw_input}')
    def make_media_input(inputs, image_paths): 
        for image_path in image_paths:
            inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
        return inputs
    chatbot.append((make_media_input(inputs, image_paths), ""))
    yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面

    # check mis-behavior
    if is_the_upload_folder(user_input):
        chatbot[-1] = (inputs, f"[Local Message] 检测到操作错误!当您上传文档之后,需点击“**函数插件区**”按钮进行处理,请勿点击“提交”按钮或者“基础功能区”按钮。")
        yield from update_ui(chatbot=chatbot, history=history, msg="正常") # 刷新界面
        time.sleep(2)

    try:
        headers, payload, api_key = generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths)
    except RuntimeError as e:
        chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
        yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
        return
        
    # 检查endpoint是否合法
    try:
        from .bridge_all import model_info
        endpoint = verify_endpoint(model_info[llm_kwargs['llm_model']]['endpoint'])
    except:
        tb_str = '```\n' + trimmed_format_exc() + '```'
        chatbot[-1] = (inputs, tb_str)
        yield from update_ui(chatbot=chatbot, history=history, msg="Endpoint不满足要求") # 刷新界面
        return

    history.append(make_media_input(inputs, image_paths))
    history.append("")

    retry = 0
    while True:
        try:
            # make a POST request to the API endpoint, stream=True
            response = requests.post(endpoint, headers=headers, proxies=proxies,
                                    json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
        except:
            retry += 1
            chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
            retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
            yield from update_ui(chatbot=chatbot, history=history, msg="请求超时"+retry_msg) # 刷新界面
            if retry > MAX_RETRY: raise TimeoutError

    gpt_replying_buffer = ""
    
    is_head_of_the_stream = True
    if stream:
        stream_response =  response.iter_lines()
        while True:
            try:
                chunk = next(stream_response)
            except StopIteration:
                # 非OpenAI官方接口的出现这样的报错,OpenAI和API2D不会走这里
                chunk_decoded = chunk.decode()
                error_msg = chunk_decoded
                # 首先排除一个one-api没有done数据包的第三方Bug情形
                if len(gpt_replying_buffer.strip()) > 0 and len(error_msg) == 0: 
                    yield from update_ui(chatbot=chatbot, history=history, msg="检测到有缺陷的非OpenAI官方接口,建议选择更稳定的接口。")
                    break
                # 其他情况,直接返回报错
                chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key)
                yield from update_ui(chatbot=chatbot, history=history, msg="非OpenAI官方接口返回了错误:" + chunk.decode()) # 刷新界面
                return
            
            # 提前读取一些信息 (用于判断异常)
            chunk_decoded, chunkjson, has_choices, choice_valid, has_content, has_role = decode_chunk(chunk)

            if is_head_of_the_stream and (r'"object":"error"' not in chunk_decoded) and (r"content" not in chunk_decoded):
                # 数据流的第一帧不携带content
                is_head_of_the_stream = False; continue
            
            if chunk:
                try:
                    if has_choices and not choice_valid:
                        # 一些垃圾第三方接口的出现这样的错误
                        continue
                    # 前者是API2D的结束条件,后者是OPENAI的结束条件
                    if ('data: [DONE]' in chunk_decoded) or (len(chunkjson['choices'][0]["delta"]) == 0):
                        # 判定为数据流的结束,gpt_replying_buffer也写完了
                        lastmsg = chatbot[-1][-1] + f"\n\n\n\n「{llm_kwargs['llm_model']}调用结束,该模型不具备上下文对话能力,如需追问,请及时切换模型。」"
                        yield from update_ui_lastest_msg(lastmsg, chatbot, history, delay=1)
                        logging.info(f'[response] {gpt_replying_buffer}')
                        break
                    # 处理数据流的主体
                    status_text = f"finish_reason: {chunkjson['choices'][0].get('finish_reason', 'null')}"
                    # 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
                    if has_content:
                        # 正常情况
                        gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]
                    elif has_role:
                        # 一些第三方接口的出现这样的错误,兼容一下吧
                        continue
                    else:
                        # 一些垃圾第三方接口的出现这样的错误
                        gpt_replying_buffer = gpt_replying_buffer + chunkjson['choices'][0]["delta"]["content"]

                    history[-1] = gpt_replying_buffer
                    chatbot[-1] = (history[-2], history[-1])
                    yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
                except Exception as e:
                    yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
                    chunk = get_full_error(chunk, stream_response)
                    chunk_decoded = chunk.decode()
                    error_msg = chunk_decoded
                    chatbot, history = handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key)
                    yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
                    print(error_msg)
                    return

def handle_error(inputs, llm_kwargs, chatbot, history, chunk_decoded, error_msg, api_key=""):
    from .bridge_all import model_info
    openai_website = ' 请登录OpenAI查看详情 https://platform.openai.com/signup'
    if "reduce the length" in error_msg:
        if len(history) >= 2: history[-1] = ""; history[-2] = "" # 清除当前溢出的输入:history[-2] 是本次输入, history[-1] 是本次输出
        history = clip_history(inputs=inputs, history=history, tokenizer=model_info[llm_kwargs['llm_model']]['tokenizer'], 
                                               max_token_limit=(model_info[llm_kwargs['llm_model']]['max_token'])) # history至少释放二分之一
        chatbot[-1] = (chatbot[-1][0], "[Local Message] Reduce the length. 本次输入过长, 或历史数据过长. 历史缓存数据已部分释放, 您可以请再次尝试. (若再次失败则更可能是因为输入过长.)")
    elif "does not exist" in error_msg:
        chatbot[-1] = (chatbot[-1][0], f"[Local Message] Model {llm_kwargs['llm_model']} does not exist. 模型不存在, 或者您没有获得体验资格.")
    elif "Incorrect API key" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key. OpenAI以提供了不正确的API_KEY为由, 拒绝服务. " + openai_website); report_invalid_key(api_key)
    elif "exceeded your current quota" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] You exceeded your current quota. OpenAI以账户额度不足为由, 拒绝服务." + openai_website); report_invalid_key(api_key)
    elif "account is not active" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] Your account is not active. OpenAI以账户失效为由, 拒绝服务." + openai_website); report_invalid_key(api_key)
    elif "associated with a deactivated account" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] You are associated with a deactivated account. OpenAI以账户失效为由, 拒绝服务." + openai_website); report_invalid_key(api_key)
    elif "API key has been deactivated" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] API key has been deactivated. OpenAI以账户失效为由, 拒绝服务." + openai_website); report_invalid_key(api_key)
    elif "bad forward key" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] Bad forward key. API2D账户额度不足.")
    elif "Not enough point" in error_msg:
        chatbot[-1] = (chatbot[-1][0], "[Local Message] Not enough point. API2D账户点数不足.")
    else:
        from toolbox import regular_txt_to_markdown
        tb_str = '```\n' + trimmed_format_exc() + '```'
        chatbot[-1] = (chatbot[-1][0], f"[Local Message] 异常 \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk_decoded)}")
    return chatbot, history


def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
    """
    整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
    """
    if not is_any_api_key(llm_kwargs['api_key']):
        raise AssertionError("你提供了错误的API_KEY。\n\n1. 临时解决方案:直接在输入区键入api_key,然后回车提交。\n\n2. 长效解决方案:在config.py中配置。")

    api_key = select_api_key(llm_kwargs['api_key'], llm_kwargs['llm_model'])

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {api_key}"
    }
    if API_ORG.startswith('org-'): headers.update({"OpenAI-Organization": API_ORG})
    if llm_kwargs['llm_model'].startswith('azure-'): 
        headers.update({"api-key": api_key})
        if llm_kwargs['llm_model'] in AZURE_CFG_ARRAY.keys():
            azure_api_key_unshared = AZURE_CFG_ARRAY[llm_kwargs['llm_model']]["AZURE_API_KEY"]
            headers.update({"api-key": azure_api_key_unshared})

    base64_images = []
    for image_path in image_paths:
        base64_images.append(encode_image(image_path))

    messages = []
    what_i_ask_now = {}
    what_i_ask_now["role"] = "user"
    what_i_ask_now["content"] = []
    what_i_ask_now["content"].append({
        "type": "text",
        "text": inputs
    })

    for image_path, base64_image in zip(image_paths, base64_images):
        what_i_ask_now["content"].append({
            "type": "image_url",
            "image_url": {
                "url": f"data:image/jpeg;base64,{base64_image}"
            }
        })

    messages.append(what_i_ask_now)
    model = llm_kwargs['llm_model']
    if llm_kwargs['llm_model'].startswith('api2d-'):
        model = llm_kwargs['llm_model'][len('api2d-'):]

    payload = {
        "model": model,
        "messages": messages, 
        "temperature": llm_kwargs['temperature'],   # 1.0,
        "top_p": llm_kwargs['top_p'],               # 1.0,
        "n": 1,
        "stream": True,
        "max_tokens": get_max_token(llm_kwargs),
        "presence_penalty": 0,
        "frequency_penalty": 0,
    }
    try:
        print(f" {llm_kwargs['llm_model']} : {inputs[:100]} ..........")
    except:
        print('输入中可能存在乱码。')
    return headers, payload, api_key