gpt_academic / request_llms /bridge_jittorllms_rwkv.py
eastsheng's picture
Upload 266 files
506c93a verified
raw
history blame
7.72 kB
from transformers import AutoModel, AutoTokenizer
import time
import threading
import importlib
from toolbox import update_ui, get_conf
from multiprocessing import Process, Pipe
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
#################################################################################
class GetGLMHandle(Process):
def __init__(self):
super().__init__(daemon=True)
self.parent, self.child = Pipe()
self.jittorllms_model = None
self.info = ""
self.local_history = []
self.success = True
self.check_dependency()
self.start()
self.threadLock = threading.Lock()
def check_dependency(self):
try:
import pandas
self.info = "依赖检测通过"
self.success = True
except:
from toolbox import trimmed_format_exc
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llms/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。" +\
r"警告:安装jittorllms依赖后将完全破坏现有的pytorch环境,建议使用docker环境!" + trimmed_format_exc()
self.success = False
def ready(self):
return self.jittorllms_model is not None
def run(self):
# 子进程执行
# 第一次运行,加载参数
def validate_path():
import os, sys
dir_name = os.path.dirname(__file__)
env = os.environ.get("PATH", "")
os.environ["PATH"] = env.replace('/cuda/bin', '/x/bin')
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
os.chdir(root_dir_assume + '/request_llms/jittorllms')
sys.path.append(root_dir_assume + '/request_llms/jittorllms')
validate_path() # validate path so you can run from base directory
def load_model():
import types
try:
if self.jittorllms_model is None:
device = get_conf('LOCAL_MODEL_DEVICE')
from .jittorllms.models import get_model
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
args_dict = {'model': 'chatrwkv'}
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
print('done get model')
except:
self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
raise RuntimeError("不能正常加载jittorllms的参数!")
print('load_model')
load_model()
# 进入任务等待状态
print('进入任务等待状态')
while True:
# 进入任务等待状态
kwargs = self.child.recv()
query = kwargs['query']
history = kwargs['history']
# 是否重置
if len(self.local_history) > 0 and len(history)==0:
print('触发重置')
self.jittorllms_model.reset()
self.local_history.append(query)
print('收到消息,开始请求')
try:
for response in self.jittorllms_model.stream_chat(query, history):
print(response)
self.child.send(response)
except:
from toolbox import trimmed_format_exc
print(trimmed_format_exc())
self.child.send('[Local Message] Call jittorllms fail.')
# 请求处理结束,开始下一个循环
self.child.send('[Finish]')
def stream_chat(self, **kwargs):
# 主进程执行
self.threadLock.acquire()
self.parent.send(kwargs)
while True:
res = self.parent.recv()
if res != '[Finish]':
yield res
else:
break
self.threadLock.release()
global rwkv_glm_handle
rwkv_glm_handle = None
#################################################################################
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
"""
多线程方法
函数的说明请见 request_llms/bridge_all.py
"""
global rwkv_glm_handle
if rwkv_glm_handle is None:
rwkv_glm_handle = GetGLMHandle()
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + rwkv_glm_handle.info
if not rwkv_glm_handle.success:
error = rwkv_glm_handle.info
rwkv_glm_handle = None
raise RuntimeError(error)
# jittorllms 没有 sys_prompt 接口,因此把prompt加入 history
history_feedin = []
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
response = ""
for response in rwkv_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
print(response)
if len(observe_window) >= 1: observe_window[0] = response
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("程序终止。")
return response
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
单线程方法
函数的说明请见 request_llms/bridge_all.py
"""
chatbot.append((inputs, ""))
global rwkv_glm_handle
if rwkv_glm_handle is None:
rwkv_glm_handle = GetGLMHandle()
chatbot[-1] = (inputs, load_message + "\n\n" + rwkv_glm_handle.info)
yield from update_ui(chatbot=chatbot, history=[])
if not rwkv_glm_handle.success:
rwkv_glm_handle = None
return
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
# 处理历史信息
history_feedin = []
for i in range(len(history)//2):
history_feedin.append([history[2*i], history[2*i+1]] )
# 开始接收jittorllms的回复
response = "[Local Message] 等待jittorllms响应中 ..."
for response in rwkv_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
chatbot[-1] = (inputs, response)
yield from update_ui(chatbot=chatbot, history=history)
# 总结输出
if response == "[Local Message] 等待jittorllms响应中 ...":
response = "[Local Message] jittorllms响应异常 ..."
history.extend([inputs, response])
yield from update_ui(chatbot=chatbot, history=history)