Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- app.py +36 -0
- example1.jpg +3 -0
- example2.jpg +3 -0
- requirements.txt +4 -0
- weights.pt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
example1.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
example2.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
from ultralytics import YOLO # Make sure this import works in your Hugging Face environment
|
5 |
+
|
6 |
+
# Load the model
|
7 |
+
@st.cache(allow_output_mutation=True)
|
8 |
+
def load_model():
|
9 |
+
model = YOLO("weights.pt") # Adjust path if needed
|
10 |
+
return model
|
11 |
+
|
12 |
+
model = load_model()
|
13 |
+
|
14 |
+
st.title("Circuit Sketch Recognition")
|
15 |
+
|
16 |
+
# File uploader allows user to add their own image
|
17 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
18 |
+
|
19 |
+
if uploaded_file is not None:
|
20 |
+
image = Image.open(uploaded_file).convert("RGB")
|
21 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
22 |
+
st.write("")
|
23 |
+
st.write("Detecting...")
|
24 |
+
|
25 |
+
# Perform inference
|
26 |
+
results = model.predict(uploaded_file)
|
27 |
+
r = results[0]
|
28 |
+
im_bgr = r.plot(conf=False, pil=True, font_size=32, line_width=2) # Returns a PIL image if pil=True
|
29 |
+
im_rgb = Image.fromarray(im_bgr[..., ::-1]) # Convert BGR to RGB
|
30 |
+
|
31 |
+
# Display the prediction
|
32 |
+
st.image(im_rgb, caption='Prediction', use_column_width=True)
|
33 |
+
|
34 |
+
# Optionally, display pre-computed example images
|
35 |
+
if st.checkbox('Show Example Results'):
|
36 |
+
st.image(['example1.jpg', 'example2.jpg'], width=300, caption=['Example 1', 'Example 2'])
|
example1.jpg
ADDED
Git LFS Details
|
example2.jpg
ADDED
Git LFS Details
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ultralytics
|
2 |
+
stremlit
|
3 |
+
Pillow
|
4 |
+
numpy
|
weights.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0791285b924f954f0370a13739ca87e2569a90bf935c0afdd69797f9dc2bbf0a
|
3 |
+
size 52120385
|