ledits / app.py
Linoy Tsaban
Update app.py
853c8df
raw
history blame
12.2 kB
import gradio as gr
import torch
import requests
from io import BytesIO
from diffusers import StableDiffusionPipeline
from diffusers import DDIMScheduler
from utils import *
from inversion_utils import *
from modified_pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
from torch import autocast, inference_mode
import re
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):
# inverts a real image according to Algorihm 1 in https://arxiv.org/pdf/2304.06140.pdf,
# based on the code in https://github.com/inbarhub/DDPM_inversion
# returns wt, zs, wts:
# wt - inverted latent
# wts - intermediate inverted latents
# zs - noise maps
sd_pipe.scheduler.set_timesteps(num_diffusion_steps)
# vae encode image
with autocast("cuda"), inference_mode():
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
# find Zs and wts - forward process
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps)
return zs, wts
def sample(zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
# reverse process (via Zs and wT)
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:])
# vae decode image
with autocast("cuda"), inference_mode():
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
if x0_dec.dim()<4:
x0_dec = x0_dec[None,:,:,:]
img = image_grid(x0_dec)
return img
# load pipelines
sd_model_id = "runwayml/stable-diffusion-v1-5"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
def get_example():
case = [
[
'examples/source_a_cat_sitting_next_to_a_mirror.jpeg',
'a cat sitting next to a mirror',
'watercolor painting of a cat sitting next to a mirror',
100,
36,
15,
'+Schnauzer dog, -cat',
5.5,
1,
'examples/ddpm_watercolor_painting_a_cat_sitting_next_to_a_mirror.png',
'examples/ddpm_sega_watercolor_painting_a_cat_sitting_next_to_a_mirror_plus_dog_minus_cat.png'
],
[
'examples/source_a_man_wearing_a_brown_hoodie_in_a_crowded_street.jpeg',
'a man wearing a brown hoodie in a crowded street',
'a robot wearing a brown hoodie in a crowded street',
100,
36,
15,
'+painting',
10,
1,
'examples/ddpm_a_robot_wearing_a_brown_hoodie_in_a_crowded_street.png',
'examples/ddpm_sega_painting_of_a_robot_wearing_a_brown_hoodie_in_a_crowded_street.png'
],
[
'examples/source_wall_with_framed_photos.jpeg',
'',
'',
100,
36,
15,
'+pink drawings of muffins',
10,
1,
'examples/ddpm_wall_with_framed_photos.png',
'examples/ddpm_sega_plus_pink_drawings_of_muffins.png'
],
[
'examples/source_an_empty_room_with_concrete_walls.jpg',
'an empty room with concrete walls',
'glass walls',
100,
36,
17,
'+giant elephant',
10,
1,
'examples/ddpm_glass_walls.png',
'examples/ddpm_sega_glass_walls_gian_elephant.png'
]]
return case
def invert_and_reconstruct(
input_image,
do_inversion,
wts, zs,
seed,
src_prompt ="",
tar_prompt="",
steps=100,
src_cfg_scale = 3.5,
skip=36,
tar_cfg_scale=15,
# neg_guidance=False,
):
torch.manual_seed(seed)
x0 = load_512(input_image, device=device)
if do_inversion:
# invert and retrieve noise maps and latent
zs_tensor, wts_tensor = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=src_cfg_scale)
wts = gr.State(value=wts_tensor)
zs = gr.State(value=zs_tensor)
do_inversion = False
output = sample(zs.value, wts.value, prompt_tar=tar_prompt, skip=skip, cfg_scale_tar=tar_cfg_scale)
return output, wts, zs, do_inversion
def edit(input_image,
do_inversion,
wts, zs, seed,
src_prompt ="",
tar_prompt="",
steps=100,
skip=36,
tar_cfg_scale=15,
edit_concept="",
sega_edit_guidance=10,
warm_up=None,
# neg_guidance=False,
):
# SEGA
# parse concepts and neg guidance
edit_concepts = edit_concept.split(",")
num_concepts = len(edit_concepts)
neg_guidance =[]
for edit_concept in edit_concepts:
edit_concept=edit_concept.strip(" ")
if edit_concept.startswith("-"):
neg_guidance.append(True)
else:
neg_guidance.append(False)
edit_concepts = [concept.strip("+|-") for concept in edit_concepts]
# parse warm-up steps
default_warm_up_steps = [1]*num_concepts
if warm_up:
digit_pattern = re.compile(r"^\d+$")
warm_up_steps_str = warm_up.split(",")
for i,num_steps in enumerate(warm_up_steps_str[:num_concepts]):
if not digit_pattern.match(num_steps):
raise gr.Error("Invalid value for warm-up steps, using 1 instead")
else:
default_warm_up_steps[i] = int(num_steps)
editing_args = dict(
editing_prompt = edit_concepts,
reverse_editing_direction = neg_guidance,
edit_warmup_steps=default_warm_up_steps,
edit_guidance_scale=[sega_edit_guidance]*num_concepts,
edit_threshold=[.95]*num_concepts,
edit_momentum_scale=0.5,
edit_mom_beta=0.6
)
latnets = wts.value[skip].expand(1, -1, -1, -1)
sega_out = sem_pipe(prompt=tar_prompt,eta=1, latents=latnets, guidance_scale = tar_cfg_scale,
num_images_per_prompt=1,
num_inference_steps=steps,
use_ddpm=True, wts=wts.value, zs=zs.value[skip:], **editing_args)
return sega_out.images[0]
def randomize_seed_fn(seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
########
# demo #
########
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">
Edit Friendly DDPM X Semantic Guidance
</h1>
<p style="font-size: 0.9rem; text-align: center; margin: 0rem; line-height: 1.2em; margin-top:1em">
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">An Edit Friendly DDPM Noise Space:
Inversion and Manipulations </a> X
<a href="https://arxiv.org/abs/2301.12247" style="text-decoration: underline;" target="_blank">SEGA: Instructing Diffusion using Semantic Dimensions</a>
<p/>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/LinoyTsaban/ddpm_sega?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>"""
with gr.Blocks(css='style.css') as demo:
def reset_do_inversion():
do_inversion = True
return do_inversion
gr.HTML(intro)
wts = gr.State()
zs = gr.State()
do_inversion = gr.State(value=True)
with gr.Row():
input_image = gr.Image(label="Input Image", interactive=True)
ddpm_edited_image = gr.Image(label=f"DDPM Reconstructed Image", interactive=False, visible=False)
sega_edited_image = gr.Image(label=f"DDPM + SEGA Edited Image", interactive=False)
input_image.style(height=512, width=512)
ddpm_edited_image.style(height=512, width=512)
sega_edited_image.style(height=512, width=512)
with gr.Row():
tar_prompt = gr.Textbox(lines=1, label="Target Prompt", interactive=True, placeholder="")
with gr.Accordion("SEGA Concepts", open=False):
with gr.Column(scale=1, min_width=100):
edit_concept = gr.Textbox(lines=1, label="SEGA Edit Concepts", visible = True, interactive=True)
# with gr.Column(scale=1, min_width=100):
with gr.Row():
with gr.Column(scale=1, min_width=100):
invert_button = gr.Button("Invert")
with gr.Column(scale=1, min_width=100):
edit_button = gr.Button("Edit")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
with gr.Column():
#inversion
src_prompt = gr.Textbox(lines=1, label="Source Prompt", interactive=True, placeholder="")
steps = gr.Number(value=100, precision=0, label="Num Diffusion Steps", interactive=True)
src_cfg_scale = gr.Number(value=3.5, label=f"Source Guidance Scale", interactive=True)
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
with gr.Column():
# reconstruction
skip = gr.Slider(minimum=0, maximum=40, value=36, label="Skip Steps", interactive=True)
tar_cfg_scale = gr.Slider(minimum=7, maximum=18,value=15, label=f"Guidance Scale", interactive=True)
sega_edit_guidance = gr.Slider(value=10, label=f"SEGA Edit Guidance Scale", interactive=True)
warm_up = gr.Textbox(label=f"SEGA Warm-up Steps", interactive=True, placeholder="type #warm-up steps for each concpets (e.g. 2,7,5...")
# neg_guidance = gr.Checkbox(label="SEGA Negative Guidance")
# gr.Markdown(help_text)
invert_button.click(
fn = randomize_seed_fn,
inputs = [seed, randomize_seed],
outputs = [seed]
).then(
fn=invert_and_reconstruct,
inputs=[input_image,
do_inversion,
wts, zs,
seed,
src_prompt,
tar_prompt,
steps,
src_cfg_scale,
skip,
tar_cfg_scale,
],
outputs=[ddpm_edited_image, wts, zs, do_inversion],
)
edit_button.click(
fn=edit,
inputs=[input_image,
do_inversion,
wts, zs,
seed,
src_prompt,
tar_prompt,
steps,
skip,
tar_cfg_scale,
edit_concept,
sega_edit_guidance,
warm_up,
# neg_guidance,
],
outputs=[sega_edited_image],
)
input_image.change(
fn = reset_do_inversion,
outputs = [do_inversion]
)
gr.Examples(
label='Examples',
examples=get_example(),
inputs=[input_image, src_prompt, tar_prompt, steps,
# src_cfg_scale,
skip,
tar_cfg_scale,
edit_concept,
sega_edit_guidance,
warm_up,
# neg_guidance,
ddpm_edited_image, sega_edited_image
],
outputs=[ddpm_edited_image, sega_edited_image],
# fn=edit,
# cache_examples=True
)
demo.queue()
demo.launch(share=False)