Spaces:
Running
on
A10G
Running
on
A10G
Linoy Tsaban
commited on
Commit
•
066c23c
1
Parent(s):
6505e1f
Update app.py
Browse files
app.py
CHANGED
@@ -22,8 +22,7 @@ def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta
|
|
22 |
sd_pipe.scheduler.set_timesteps(num_diffusion_steps)
|
23 |
|
24 |
# vae encode image
|
25 |
-
|
26 |
-
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
|
27 |
|
28 |
# find Zs and wts - forward process
|
29 |
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps)
|
@@ -37,8 +36,7 @@ def sample(wt, zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
|
|
37 |
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:])
|
38 |
|
39 |
# vae decode image
|
40 |
-
|
41 |
-
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
|
42 |
if x0_dec.dim()<4:
|
43 |
x0_dec = x0_dec[None,:,:,:]
|
44 |
img = image_grid(x0_dec)
|
@@ -47,9 +45,9 @@ def sample(wt, zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
|
|
47 |
# load pipelines
|
48 |
sd_model_id = "runwayml/stable-diffusion-v1-5"
|
49 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
50 |
-
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
|
51 |
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
|
52 |
-
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
|
53 |
|
54 |
|
55 |
def edit(input_image, input_image_prompt='', target_prompt='', edit_prompt='',
|
|
|
22 |
sd_pipe.scheduler.set_timesteps(num_diffusion_steps)
|
23 |
|
24 |
# vae encode image
|
25 |
+
w0 = (sd_pipe.vae.encode(x0).latent_dist.mode() * 0.18215).float()
|
|
|
26 |
|
27 |
# find Zs and wts - forward process
|
28 |
wt, zs, wts = inversion_forward_process(sd_pipe, w0, etas=eta, prompt=prompt_src, cfg_scale=cfg_scale_src, prog_bar=True, num_inference_steps=num_diffusion_steps)
|
|
|
36 |
w0, _ = inversion_reverse_process(sd_pipe, xT=wts[skip], etas=eta, prompts=[prompt_tar], cfg_scales=[cfg_scale_tar], prog_bar=True, zs=zs[skip:])
|
37 |
|
38 |
# vae decode image
|
39 |
+
x0_dec = sd_pipe.vae.decode(1 / 0.18215 * w0).sample
|
|
|
40 |
if x0_dec.dim()<4:
|
41 |
x0_dec = x0_dec[None,:,:,:]
|
42 |
img = image_grid(x0_dec)
|
|
|
45 |
# load pipelines
|
46 |
sd_model_id = "runwayml/stable-diffusion-v1-5"
|
47 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
48 |
+
sd_pipe = StableDiffusionPipeline.from_pretrained(sd_model_id, ,torch_dtype=torch.float16).to(device)
|
49 |
sd_pipe.scheduler = DDIMScheduler.from_config(sd_model_id, subfolder = "scheduler")
|
50 |
+
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id, ,torch_dtype=torch.float16).to(device)
|
51 |
|
52 |
|
53 |
def edit(input_image, input_image_prompt='', target_prompt='', edit_prompt='',
|