Spaces:
Running
on
A10G
Running
on
A10G
Linoy Tsaban
commited on
Commit
•
5e25b83
1
Parent(s):
162c70e
Update app.py
Browse files
app.py
CHANGED
@@ -6,11 +6,7 @@ from diffusers import StableDiffusionPipeline
|
|
6 |
from diffusers import DDIMScheduler
|
7 |
from utils import *
|
8 |
from inversion_utils import *
|
9 |
-
|
10 |
-
model_id = "CompVis/stable-diffusion-v1-4"
|
11 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
-
sd_pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)
|
13 |
-
sd_pipe.scheduler = DDIMScheduler.from_config(model_id, subfolder = "scheduler")
|
14 |
from torch import autocast, inference_mode
|
15 |
|
16 |
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):
|
@@ -48,10 +44,17 @@ def sample(wt, zs, wts, prompt_tar="", cfg_scale_tar=15, skip=36, eta = 1):
|
|
48 |
img = image_grid(x0_dec)
|
49 |
return img
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
|
53 |
-
|
54 |
-
|
|
|
55 |
offsets=(0,0,0,0)
|
56 |
x0 = load_512(input_image, *offsets, device)
|
57 |
|
@@ -65,7 +68,22 @@ def edit(input_image, input_image_prompt, target_prompt, guidance_scale=15, skip
|
|
65 |
pure_ddpm_out = sample(wt, zs, wts, prompt_tar=target_prompt,
|
66 |
cfg_scale_tar=guidance_scale, skip=skip,
|
67 |
eta = eta)
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
# See the gradio docs for the types of inputs and outputs available
|
@@ -73,13 +91,15 @@ inputs = [
|
|
73 |
gr.Image(label="input image", shape=(512, 512)),
|
74 |
gr.Textbox(label="input prompt"),
|
75 |
gr.Textbox(label="target prompt"),
|
76 |
-
gr.
|
|
|
77 |
gr.Slider(label="skip", minimum=0, maximum=40, value=36),
|
78 |
-
gr.Slider(label="
|
79 |
-
|
|
|
80 |
|
81 |
]
|
82 |
-
outputs = gr.Image(label="
|
83 |
|
84 |
# And the minimal interface
|
85 |
demo = gr.Interface(
|
@@ -87,5 +107,4 @@ demo = gr.Interface(
|
|
87 |
inputs=inputs,
|
88 |
outputs=outputs,
|
89 |
)
|
90 |
-
|
91 |
-
demo.launch()
|
|
|
6 |
from diffusers import DDIMScheduler
|
7 |
from utils import *
|
8 |
from inversion_utils import *
|
9 |
+
from modified_pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
|
|
|
|
|
|
|
|
|
10 |
from torch import autocast, inference_mode
|
11 |
|
12 |
def invert(x0, prompt_src="", num_diffusion_steps=100, cfg_scale_src = 3.5, eta = 1):
|
|
|
44 |
img = image_grid(x0_dec)
|
45 |
return img
|
46 |
|
47 |
+
# load pipelines
|
48 |
+
sd_model_id = "runwayml/stable-diffusion-v1-5"
|
49 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
50 |
+
sd_pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)
|
51 |
+
sd_pipe.scheduler = DDIMScheduler.from_config(model_id, subfolder = "scheduler")
|
52 |
+
sem_pipe = SemanticStableDiffusionPipeline.from_pretrained(sd_model_id).to(device)
|
53 |
|
54 |
|
55 |
+
def edit(input_image, input_image_prompt, target_prompt, edit_prompt,
|
56 |
+
guidance_scale=15, skip=36, num_diffusion_steps=100,
|
57 |
+
negative_guidance = False):
|
58 |
offsets=(0,0,0,0)
|
59 |
x0 = load_512(input_image, *offsets, device)
|
60 |
|
|
|
68 |
pure_ddpm_out = sample(wt, zs, wts, prompt_tar=target_prompt,
|
69 |
cfg_scale_tar=guidance_scale, skip=skip,
|
70 |
eta = eta)
|
71 |
+
|
72 |
+
editing_args = dict(
|
73 |
+
editing_prompt = [edit_prompt],
|
74 |
+
reverse_editing_direction = [negative_guidance],
|
75 |
+
edit_warmup_steps=[5],
|
76 |
+
edit_guidance_scale=[8],
|
77 |
+
edit_threshold=[.93],
|
78 |
+
edit_momentum_scale=0.5,
|
79 |
+
edit_mom_beta=0.6
|
80 |
+
)
|
81 |
+
sega_out = sem_pipe(prompt=target_prompt,eta=eta, latents=latnets,
|
82 |
+
num_images_per_prompt=1,
|
83 |
+
guidance_scale=edit_guidance_scale,
|
84 |
+
num_inference_steps=num_diffusion_steps_pure_ddpm,
|
85 |
+
use_ddpm=True, wts=wts, zs=zs[skip:], **editing_args)
|
86 |
+
return pure_ddpm_out,sega_out.images[0]
|
87 |
|
88 |
|
89 |
# See the gradio docs for the types of inputs and outputs available
|
|
|
91 |
gr.Image(label="input image", shape=(512, 512)),
|
92 |
gr.Textbox(label="input prompt"),
|
93 |
gr.Textbox(label="target prompt"),
|
94 |
+
gr.Textbox(label="SEGA edit prompt"),
|
95 |
+
gr.Slider(label="guidance scale", minimum=7, maximum=18, value=15),
|
96 |
gr.Slider(label="skip", minimum=0, maximum=40, value=36),
|
97 |
+
gr.Slider(label="num diffusion steps", minimum=0, maximum=300, value=100),
|
98 |
+
gr.Checkbox(label="SEGA negative_guidance"),
|
99 |
+
|
100 |
|
101 |
]
|
102 |
+
outputs = [gr.Image(label="DDPM"),gr.Image(label="DDPM+SEGA")]
|
103 |
|
104 |
# And the minimal interface
|
105 |
demo = gr.Interface(
|
|
|
107 |
inputs=inputs,
|
108 |
outputs=outputs,
|
109 |
)
|
110 |
+
demo.launch() # debug=True allows you to see errors and output in Colab
|
|