File size: 2,501 Bytes
ae2b518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import streamlit as st
import pickle
import time
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import UnstructuredURLLoader
import google.generativeai as palm
from langchain.embeddings import GooglePalmEmbeddings
from langchain.llms import GooglePalm
from langchain.vectorstores import FAISS

from dotenv import load_dotenv
load_dotenv()  # take environment variables from .env (especially openai api key)

st.title("RockyBot: News Research Tool πŸ“ˆ")
st.sidebar.title("News Article URLs")

urls = []
for i in range(3):
    url = st.sidebar.text_input(f"URL {i+1}")
    urls.append(url)

process_url_clicked = st.sidebar.button("Process URLs")
file_path = "faiss_store_openai.pkl"

main_placeholder = st.empty()
llm = GooglePalm()

if process_url_clicked:
    # load data
    loader = UnstructuredURLLoader(urls=urls)
    main_placeholder.text("Data Loading...Started...βœ…βœ…βœ…")
    data = loader.load()
    # split data
    text_splitter = RecursiveCharacterTextSplitter(
        separators=['\n\n', '\n', '.', ','],
        chunk_size=1000
    )
    main_placeholder.text("Text Splitter...Started...βœ…βœ…βœ…")
    docs = text_splitter.split_documents(data)
    # create embeddings and save it to FAISS index
    embeddings = GooglePalmEmbeddings()
    vectorstore_openai = FAISS.from_documents(docs, embeddings)
    main_placeholder.text("Embedding Vector Started Building...βœ…βœ…βœ…")
    time.sleep(2)

    # Save the FAISS index to a pickle file
    with open(file_path, "wb") as f:
        pickle.dumps(vectorstore_openai, f)

query = main_placeholder.text_input("Question: ")
if query:
    if os.path.exists(file_path):
        with open(file_path, "rb") as f:
            vectorstore = pickle.load(f)
            chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever())
            result = chain({"question": query}, return_only_outputs=True)
            # result will be a dictionary of this format --> {"answer": "", "sources": [] }
            st.header("Answer")
            st.write(result["answer"])

            # Display sources, if available
            sources = result.get("sources", "")
            if sources:
                st.subheader("Sources:")
                sources_list = sources.split("\n")  # Split the sources by newline
                for source in sources_list:
                    st.write(source)