import os import streamlit as st import pickle import time from langchain.chains import RetrievalQAWithSourcesChain from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import UnstructuredURLLoader import google.generativeai as palm from langchain.embeddings import GooglePalmEmbeddings from langchain.llms import GooglePalm from langchain.vectorstores import FAISS from dotenv import load_dotenv load_dotenv() # take environment variables from .env (especially openai api key) st.title("RockyBot: News Research Tool 📈") st.sidebar.title("News Article URLs") urls = [] for i in range(3): url = st.sidebar.text_input(f"URL {i+1}") urls.append(url) process_url_clicked = st.sidebar.button("Process URLs") file_path = "faiss_store_openai.pkl" main_placeholder = st.empty() llm = GooglePalm() if process_url_clicked: # load data loader = UnstructuredURLLoader(urls=urls) main_placeholder.text("Data Loading...Started...✅✅✅") data = loader.load() # split data text_splitter = RecursiveCharacterTextSplitter( separators=['\n\n', '\n', '.', ','], chunk_size=1000 ) main_placeholder.text("Text Splitter...Started...✅✅✅") docs = text_splitter.split_documents(data) # create embeddings and save it to FAISS index embeddings = GooglePalmEmbeddings() vectorstore_openai = FAISS.from_documents(docs, embeddings) main_placeholder.text("Embedding Vector Started Building...✅✅✅") time.sleep(2) # Save the FAISS index to a pickle file with open(file_path, "wb") as f: pickle.dumps(vectorstore_openai, f) query = main_placeholder.text_input("Question: ") if query: if os.path.exists(file_path): with open(file_path, "rb") as f: vectorstore = pickle.load(f) chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever()) result = chain({"question": query}, return_only_outputs=True) # result will be a dictionary of this format --> {"answer": "", "sources": [] } st.header("Answer") st.write(result["answer"]) # Display sources, if available sources = result.get("sources", "") if sources: st.subheader("Sources:") sources_list = sources.split("\n") # Split the sources by newline for source in sources_list: st.write(source)