File size: 2,669 Bytes
2a5f9fb
c0fa950
df66f6e
2a5f9fb
 
c0fa950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b81a33b
 
 
2a5f9fb
c0fa950
2a5f9fb
c0fa950
7499b46
c0fa950
 
 
 
 
2a5f9fb
1841941
 
 
 
2a5f9fb
b81a33b
2a5f9fb
c0fa950
395eff6
 
 
0c7ef71
 
2a5f9fb
 
 
 
c0fa950
2a5f9fb
 
c0fa950
 
 
2a5f9fb
b81a33b
1253c3b
71ecfbb
b81a33b
c0fa950
71ecfbb
 
2a5f9fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
from yaml import safe_load

from huggingface_hub import HfApi

TASK_CONFIG_NAME = os.getenv("TASK_CONFIG", "pt_config")
TASK_CONFIG_PATH = os.path.join('tasks_config', TASK_CONFIG_NAME + ".yaml")
with open(TASK_CONFIG_PATH, 'r', encoding='utf-8') as f:
    TASK_CONFIG = safe_load(f)

def get_config(name, default):
    res = None

    if name in os.environ:
        res = os.environ[name]
    elif 'config' in TASK_CONFIG:
        res = TASK_CONFIG['config'].get(name, None)

    if res is None:
        return default
    return res

def str2bool(v):
  return str(v).lower() in ("yes", "true", "t", "1")

# clone / pull the lmeh eval data
H4_TOKEN = get_config("H4_TOKEN", None)

LEADERBOARD_NAME = get_config("LEADERBOARD_NAME", "Open LLM Leaderboard")

REPO_ID = get_config("REPO_ID", "HuggingFaceH4/open_llm_leaderboard")
QUEUE_REPO = get_config("QUEUE_REPO", "open-llm-leaderboard/requests")
DYNAMIC_INFO_REPO = get_config("DYNAMIC_INFO_REPO", "open-llm-leaderboard/dynamic_model_information")
RESULTS_REPO = get_config("RESULTS_REPO", "open-llm-leaderboard/results")
RAW_RESULTS_REPO = get_config("RAW_RESgit sULTS_REPO", None)

PRIVATE_QUEUE_REPO = QUEUE_REPO
PRIVATE_RESULTS_REPO = RESULTS_REPO
#PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests"
#PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"

IS_PUBLIC = str2bool(get_config("IS_PUBLIC", True))

CACHE_PATH=get_config("HF_HOME", ".")

EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
DYNAMIC_INFO_PATH = os.path.join(CACHE_PATH, "dynamic-info")
DYNAMIC_INFO_FILE_PATH = os.path.join(DYNAMIC_INFO_PATH, "model_infos.json")

EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"

PATH_TO_COLLECTION = get_config("PATH_TO_COLLECTION", "open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03")

# Rate limit variables
RATE_LIMIT_PERIOD = int(get_config("RATE_LIMIT_PERIOD", 7))
RATE_LIMIT_QUOTA = int(get_config("RATE_LIMIT_QUOTA", 5))
HAS_HIGHER_RATE_LIMIT = get_config("HAS_HIGHER_RATE_LIMIT", "TheBloke").split(',')

TRUST_REMOTE_CODE = str2bool(get_config("TRUST_REMOTE_CODE", False))

#Set if you want to get an extra field with the average eval results from the HF leaderboard
GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS = str2bool(get_config("GET_ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS", False))
ORIGINAL_HF_LEADERBOARD_RESULTS_REPO = get_config("ORIGINAL_HF_LEADERBOARD_RESULTS_REPO", "open-llm-leaderboard/results")
ORIGINAL_HF_LEADERBOARD_EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, 'original_results')

API = HfApi(token=H4_TOKEN)