eduagarcia's picture
New tasks difinitions
3449f84
raw
history blame
10.9 kB
from dataclasses import dataclass, make_dataclass
from enum import Enum
from typing import List
import pandas as pd
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
@dataclass
class Task:
benchmark: str
metric: str
col_name: str
baseline: float = 0.0
human_baseline: float = 0.0
few_shot: int = None
limit: int = None
task_list: List[str] = None
link: str = None
description: str = None
class Tasks(Enum):
oab_exams = Task(
benchmark="oab_exams",
metric="exact_match",
col_name="OAB Exams",
baseline=25.0,
human_baseline=50.0,
few_shot=5,
limit=None,
task_list=["oab_exams_generate"],
link="https://huggingface.co/datasets/eduagarcia/oab_exams",
description="OAB Exams is a dataset of 1,000 questions from the Brazilian Bar Association's exams."
)
brazilian_court_decisions_judgment = Task(
benchmark="brazilian_court_decisions_judgment",
metric="f1_macro",
col_name="BR Court Decisions",
baseline=33.33,
human_baseline=100.0,
few_shot=5,
limit=None,
task_list=["brazilian_court_decisions_judgment_generate"],
link="https://huggingface.co/datasets/joelniklaus/brazilian_court_decisions",
description="A classification dataset of court decisions from the Tribunal de Justiça de Alagoas (TJAL, the State Supreme Court of Alagoas (Brazil)."
)
datalawyer_frases = Task(
benchmark="datalawyer_frases",
metric="f1_macro",
col_name="DL Frases",
baseline=10.0,
human_baseline=100.0,
few_shot=15,
limit=2000,
task_list=["datalawyer_frases_generate"],
link="https://huggingface.co/datasets/eduagarcia/portuguese_benchmark",
description="A classification dataset"
)
rrip = Task(
benchmark="rrip",
metric="f1_macro",
col_name="RRIP",
baseline=12.5,
human_baseline=100.0,
few_shot=15,
limit=None,
task_list=["rrip_generate"],
link="https://huggingface.co/datasets/eduagarcia/portuguese_benchmark",
description="A classification dataset"
)
#arc = Task("arc:challenge", "acc_norm", "ARC", 25.0, 80.0)
#hellaswag = Task("hellaswag", "acc_norm", "HellaSwag", 25.0, 95.0)
#mmlu = Task("hendrycksTest", "acc", "MMLU", 25.0, 89.8)
#truthfulqa = Task("truthfulqa:mc", "mc2", "TruthfulQA", 25.0, 94.0)
#winogrande = Task("winogrande", "acc", "Winogrande", 50.0, 94.0)
#gsm8k = Task("gsm8k", "acc", "GSM8K", 0.21, 100)
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dummy: bool = False
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
baseline_row = {
AutoEvalColumn.model.name: "<p>Baseline</p>",
AutoEvalColumn.revision.name: "N/A",
AutoEvalColumn.precision.name: None,
AutoEvalColumn.merged.name: False,
#AutoEvalColumn.average.name: 31.0,
#AutoEvalColumn.arc.name: 25.0,
#AutoEvalColumn.hellaswag.name: 25.0,
#AutoEvalColumn.mmlu.name: 25.0,
#AutoEvalColumn.truthfulqa.name: 25.0,
#AutoEvalColumn.winogrande.name: 50.0,
#AutoEvalColumn.gsm8k.name: 0.21,
AutoEvalColumn.dummy.name: "baseline",
AutoEvalColumn.model_type.name: "",
AutoEvalColumn.flagged.name: False,
AutoEvalColumn.model_type_symbol.name: None,
AutoEvalColumn.architecture.name: None,
AutoEvalColumn.weight_type.name: None,
AutoEvalColumn.params.name: 0,
AutoEvalColumn.likes.name: 0,
AutoEvalColumn.license.name: "",
AutoEvalColumn.still_on_hub.name: False,
AutoEvalColumn.moe.name: False
}
baseline_list = []
for task in Tasks:
baseline_row[task.name] = task.value.baseline
if task.value.baseline is not None:
baseline_list.append(task.value.baseline)
baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)
# Average ⬆️ human baseline is 0.897 (source: averaging human baselines below)
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
# HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide)
# MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ)
# TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf)
# Winogrande: https://leaderboard.allenai.org/winogrande/submissions/public
# GSM8K: paper
# Define the human baselines
human_baseline_row = {
AutoEvalColumn.model.name: "<p>Human performance</p>",
AutoEvalColumn.revision.name: "N/A",
AutoEvalColumn.precision.name: None,
#AutoEvalColumn.average.name: 92.75,
AutoEvalColumn.merged.name: False,
#AutoEvalColumn.arc.name: 80.0,
#AutoEvalColumn.hellaswag.name: 95.0,
#AutoEvalColumn.mmlu.name: 89.8,
#AutoEvalColumn.truthfulqa.name: 94.0,
#AutoEvalColumn.winogrande.name: 94.0,
#AutoEvalColumn.gsm8k.name: 100,
AutoEvalColumn.dummy.name: "human_baseline",
AutoEvalColumn.model_type.name: "",
AutoEvalColumn.flagged.name: False,
AutoEvalColumn.model_type_symbol.name: None,
AutoEvalColumn.architecture.name: None,
AutoEvalColumn.weight_type.name: None,
AutoEvalColumn.params.name: 0,
AutoEvalColumn.likes.name: 0,
AutoEvalColumn.license.name: "",
AutoEvalColumn.still_on_hub.name: False,
AutoEvalColumn.moe.name: False
}
baseline_list = []
for task in Tasks:
human_baseline_row[task.name] = task.value.human_baseline
if task.value.human_baseline is not None:
baseline_list.append(task.value.human_baseline)
human_baseline_row[AutoEvalColumn.average.name] = round(sum(baseline_list) / len(baseline_list), 2)
@dataclass
class ModelDetails:
name: str
symbol: str = "" # emoji, only for the model type
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟒")
FT = ModelDetails(name="fine-tuned", symbol="πŸ”Ά")
IFT = ModelDetails(name="instruction-tuned", symbol="β­•")
RL = ModelDetails(name="RL-tuned", symbol="🟦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "πŸ”Ά" in type:
return ModelType.FT
if "pretrained" in type or "🟒" in type:
return ModelType.PT
if "RL-tuned" in type or "🟦" in type:
return ModelType.RL
if "instruction-tuned" in type or "β­•" in type:
return ModelType.IFT
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
qt_8bit = ModelDetails("8bit")
qt_4bit = ModelDetails("4bit")
qt_GPTQ = ModelDetails("GPTQ")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["8bit"]:
return Precision.qt_8bit
if precision in ["4bit"]:
return Precision.qt_4bit
if precision in ["GPTQ", "None"]:
return Precision.qt_GPTQ
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1.5": pd.Interval(0, 2, closed="right"),
"~3": pd.Interval(2, 4, closed="right"),
"~7": pd.Interval(4, 9, closed="right"),
"~13": pd.Interval(9, 20, closed="right"),
"~35": pd.Interval(20, 45, closed="right"),
"~60": pd.Interval(45, 70, closed="right"),
"70+": pd.Interval(70, 10000, closed="right"),
}