eduagarcia commited on
Commit
9c5c692
1 Parent(s): 183ec61

update collection format

Browse files
Files changed (4) hide show
  1. README.md +26 -0
  2. model_list.txt +26 -0
  3. src/display/utils.py +3 -3
  4. src/tools/collections.py +97 -26
README.md CHANGED
@@ -79,8 +79,13 @@ models:
79
  - JJhooww/Mistral-7B-v0.2-Base_ptbr
80
  - JJhooww/MistralReloadBR_v2_ptbr
81
  - JJhooww/Mistral_Relora_Step2k
 
 
 
 
82
  - MagusCorp/legislinho
83
  - MaziyarPanahi/Mistral-7B-Instruct-Aya-101
 
84
  - NOVA-vision-language/GlorIA-1.3B
85
  - Nexusflow/Starling-LM-7B-beta
86
  - NousResearch/Nous-Hermes-13b
@@ -130,6 +135,7 @@ models:
130
  - TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
131
  - Unbabel/TowerBase-7B-v0.1
132
  - Walmart-the-bag/Misted-v2-7B
 
133
  - Walmart-the-bag/WordWoven-2x7B
134
  - Weni/WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
135
  - Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT
@@ -143,6 +149,9 @@ models:
143
  - Weni/ZeroShot-Multilanguage-Zephyr-7B
144
  - abacusai/Smaug-34B-v0.1
145
  - abacusai/Smaug-72B-v0.1
 
 
 
146
  - allenai/OLMo-1B
147
  - allenai/OLMo-7B
148
  - allenai/OLMo-7B-Twin-2T
@@ -160,7 +169,9 @@ models:
160
  - bigscience/bloom-3b
161
  - bigscience/bloom-560m
162
  - bigscience/bloom-7b1
 
163
  - cnmoro/Mistral-7B-Portuguese
 
164
  - croissantllm/CroissantLLMBase
165
  - deepseek-ai/deepseek-llm-7b-base
166
  - deepseek-ai/deepseek-moe-16b-base
@@ -171,6 +182,7 @@ models:
171
  - dynamofl/dynamo-8B-v0.1
172
  - eduagarcia/gemma-7b-it_no_chat_template
173
  - eduagarcia/gemma-7b-it_singleturn_chat_template
 
174
  - facebook/opt-1.3b
175
  - facebook/opt-125m
176
  - facebook/opt-13b
@@ -206,8 +218,11 @@ models:
206
  - internlm/internlm2-base-20b
207
  - internlm/internlm2-base-7b
208
  - internlm/internlm2-chat-1_8b
 
209
  - internlm/internlm2-chat-20b
 
210
  - internlm/internlm2-chat-7b
 
211
  - josu/gpt-neo-pt-1.3B
212
  - josu/gpt-neo-pt-br
213
  - lmsys/vicuna-13b-v1.5
@@ -215,6 +230,7 @@ models:
215
  - lrds-code/boana-7b-instruct
216
  - lrds-code/samba-1.1B
217
  - lucianosb/boto-7B
 
218
  - maritaca-ai/sabia-7b
219
  - matsuo-lab/weblab-10b
220
  - meta-llama/Llama-2-13b-chat-hf
@@ -229,6 +245,7 @@ models:
229
  - microsoft/phi-1_5
230
  - microsoft/phi-2
231
  - mistral-community/Mistral-7B-v0.2
 
232
  - mistral-community/Mixtral-8x22B-v0.1-4bit
233
  - mistralai/Mistral-7B-Instruct-v0.2
234
  - mistralai/Mistral-7B-v0.1
@@ -271,11 +288,19 @@ models:
271
  - recogna-nlp/Phi-Bode
272
  - recogna-nlp/bode-13b-alpaca-pt-br
273
  - recogna-nlp/bode-7b-alpaca-pt-br
 
 
274
  - recogna-nlp/gembode-2b-ultraalpaca
 
275
  - recogna-nlp/internlmbode-7b
276
  - recogna-nlp/mistral-bode
 
277
  - recogna-nlp/phi-bode-2-ultraalpaca
 
 
 
278
  - rhaymison/Llama-portuguese-13b-Luana-v0.2
 
279
  - rhaymison/Mistral-portuguese-luana-7b
280
  - rhaymison/Mistral-portuguese-luana-7b-Mathematics
281
  - rhaymison/Mistral-portuguese-luana-7b-chat
@@ -311,6 +336,7 @@ models:
311
  - tiiuae/falcon-7b
312
  - togethercomputer/RedPajama-INCITE-7B-Base
313
  - togethercomputer/RedPajama-INCITE-Base-3B-v1
 
314
  - upstage/SOLAR-10.7B-Instruct-v1.0
315
  - upstage/SOLAR-10.7B-v1.0
316
  - wandgibaut/periquito-3B
 
79
  - JJhooww/Mistral-7B-v0.2-Base_ptbr
80
  - JJhooww/MistralReloadBR_v2_ptbr
81
  - JJhooww/Mistral_Relora_Step2k
82
+ - JosephusCheung/LL7M
83
+ - M4-ai/tau-0.5B
84
+ - M4-ai/tau-0.5B-instruct-DPOP
85
+ - M4-ai/tau-1.8B
86
  - MagusCorp/legislinho
87
  - MaziyarPanahi/Mistral-7B-Instruct-Aya-101
88
+ - MulaBR/Mula-4x160-v0.1
89
  - NOVA-vision-language/GlorIA-1.3B
90
  - Nexusflow/Starling-LM-7B-beta
91
  - NousResearch/Nous-Hermes-13b
 
135
  - TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
136
  - Unbabel/TowerBase-7B-v0.1
137
  - Walmart-the-bag/Misted-v2-7B
138
+ - Walmart-the-bag/Quintellect-10.7B
139
  - Walmart-the-bag/WordWoven-2x7B
140
  - Weni/WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
141
  - Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT
 
149
  - Weni/ZeroShot-Multilanguage-Zephyr-7B
150
  - abacusai/Smaug-34B-v0.1
151
  - abacusai/Smaug-72B-v0.1
152
+ - adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.1
153
+ - adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.2
154
+ - adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.2-fft
155
  - allenai/OLMo-1B
156
  - allenai/OLMo-7B
157
  - allenai/OLMo-7B-Twin-2T
 
169
  - bigscience/bloom-3b
170
  - bigscience/bloom-560m
171
  - bigscience/bloom-7b1
172
+ - botbot-ai/CabraLlama3-8b
173
  - cnmoro/Mistral-7B-Portuguese
174
+ - cognitivecomputations/dolphin-2.9-llama3-8b
175
  - croissantllm/CroissantLLMBase
176
  - deepseek-ai/deepseek-llm-7b-base
177
  - deepseek-ai/deepseek-moe-16b-base
 
182
  - dynamofl/dynamo-8B-v0.1
183
  - eduagarcia/gemma-7b-it_no_chat_template
184
  - eduagarcia/gemma-7b-it_singleturn_chat_template
185
+ - ericzzz/falcon-rw-1b-instruct-openorca
186
  - facebook/opt-1.3b
187
  - facebook/opt-125m
188
  - facebook/opt-13b
 
218
  - internlm/internlm2-base-20b
219
  - internlm/internlm2-base-7b
220
  - internlm/internlm2-chat-1_8b
221
+ - internlm/internlm2-chat-1_8b-sft
222
  - internlm/internlm2-chat-20b
223
+ - internlm/internlm2-chat-20b-sft
224
  - internlm/internlm2-chat-7b
225
+ - internlm/internlm2-chat-7b-sft
226
  - josu/gpt-neo-pt-1.3B
227
  - josu/gpt-neo-pt-br
228
  - lmsys/vicuna-13b-v1.5
 
230
  - lrds-code/boana-7b-instruct
231
  - lrds-code/samba-1.1B
232
  - lucianosb/boto-7B
233
+ - lucianosb/boto-7B-v1.1
234
  - maritaca-ai/sabia-7b
235
  - matsuo-lab/weblab-10b
236
  - meta-llama/Llama-2-13b-chat-hf
 
245
  - microsoft/phi-1_5
246
  - microsoft/phi-2
247
  - mistral-community/Mistral-7B-v0.2
248
+ - mistral-community/Mixtral-8x22B-Instruct-v0.1-4bit
249
  - mistral-community/Mixtral-8x22B-v0.1-4bit
250
  - mistralai/Mistral-7B-Instruct-v0.2
251
  - mistralai/Mistral-7B-v0.1
 
288
  - recogna-nlp/Phi-Bode
289
  - recogna-nlp/bode-13b-alpaca-pt-br
290
  - recogna-nlp/bode-7b-alpaca-pt-br
291
+ - recogna-nlp/gembode-2b-base-ultraalpaca
292
+ - recogna-nlp/gembode-2b-base-ultraalpaca-qlora
293
  - recogna-nlp/gembode-2b-ultraalpaca
294
+ - recogna-nlp/gembode-2b-ultraalpaca-qlora
295
  - recogna-nlp/internlmbode-7b
296
  - recogna-nlp/mistral-bode
297
+ - recogna-nlp/mistralbode_7b_qlora_ultraalpaca
298
  - recogna-nlp/phi-bode-2-ultraalpaca
299
+ - recogna-nlp/qwenbode_1_8b_chat_ultraalpaca
300
+ - recogna-nlp/qwenbode_1_8b_chat_ultraalpaca_qlora
301
+ - recogna-nlp/zephyr_7b_beta_ultraalpaca
302
  - rhaymison/Llama-portuguese-13b-Luana-v0.2
303
+ - rhaymison/Mistral-8x7b-portuguese-luana
304
  - rhaymison/Mistral-portuguese-luana-7b
305
  - rhaymison/Mistral-portuguese-luana-7b-Mathematics
306
  - rhaymison/Mistral-portuguese-luana-7b-chat
 
336
  - tiiuae/falcon-7b
337
  - togethercomputer/RedPajama-INCITE-7B-Base
338
  - togethercomputer/RedPajama-INCITE-Base-3B-v1
339
+ - unsloth/mistral-7b-bnb-4bit
340
  - upstage/SOLAR-10.7B-Instruct-v1.0
341
  - upstage/SOLAR-10.7B-v1.0
342
  - wandgibaut/periquito-3B
model_list.txt CHANGED
@@ -50,8 +50,13 @@
50
  - JJhooww/Mistral-7B-v0.2-Base_ptbr
51
  - JJhooww/MistralReloadBR_v2_ptbr
52
  - JJhooww/Mistral_Relora_Step2k
 
 
 
 
53
  - MagusCorp/legislinho
54
  - MaziyarPanahi/Mistral-7B-Instruct-Aya-101
 
55
  - NOVA-vision-language/GlorIA-1.3B
56
  - Nexusflow/Starling-LM-7B-beta
57
  - NousResearch/Nous-Hermes-13b
@@ -101,6 +106,7 @@
101
  - TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
102
  - Unbabel/TowerBase-7B-v0.1
103
  - Walmart-the-bag/Misted-v2-7B
 
104
  - Walmart-the-bag/WordWoven-2x7B
105
  - Weni/WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
106
  - Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT
@@ -114,6 +120,9 @@
114
  - Weni/ZeroShot-Multilanguage-Zephyr-7B
115
  - abacusai/Smaug-34B-v0.1
116
  - abacusai/Smaug-72B-v0.1
 
 
 
117
  - allenai/OLMo-1B
118
  - allenai/OLMo-7B
119
  - allenai/OLMo-7B-Twin-2T
@@ -131,7 +140,9 @@
131
  - bigscience/bloom-3b
132
  - bigscience/bloom-560m
133
  - bigscience/bloom-7b1
 
134
  - cnmoro/Mistral-7B-Portuguese
 
135
  - croissantllm/CroissantLLMBase
136
  - deepseek-ai/deepseek-llm-7b-base
137
  - deepseek-ai/deepseek-moe-16b-base
@@ -142,6 +153,7 @@
142
  - dynamofl/dynamo-8B-v0.1
143
  - eduagarcia/gemma-7b-it_no_chat_template
144
  - eduagarcia/gemma-7b-it_singleturn_chat_template
 
145
  - facebook/opt-1.3b
146
  - facebook/opt-125m
147
  - facebook/opt-13b
@@ -177,8 +189,11 @@
177
  - internlm/internlm2-base-20b
178
  - internlm/internlm2-base-7b
179
  - internlm/internlm2-chat-1_8b
 
180
  - internlm/internlm2-chat-20b
 
181
  - internlm/internlm2-chat-7b
 
182
  - josu/gpt-neo-pt-1.3B
183
  - josu/gpt-neo-pt-br
184
  - lmsys/vicuna-13b-v1.5
@@ -186,6 +201,7 @@
186
  - lrds-code/boana-7b-instruct
187
  - lrds-code/samba-1.1B
188
  - lucianosb/boto-7B
 
189
  - maritaca-ai/sabia-7b
190
  - matsuo-lab/weblab-10b
191
  - meta-llama/Llama-2-13b-chat-hf
@@ -200,6 +216,7 @@
200
  - microsoft/phi-1_5
201
  - microsoft/phi-2
202
  - mistral-community/Mistral-7B-v0.2
 
203
  - mistral-community/Mixtral-8x22B-v0.1-4bit
204
  - mistralai/Mistral-7B-Instruct-v0.2
205
  - mistralai/Mistral-7B-v0.1
@@ -242,11 +259,19 @@
242
  - recogna-nlp/Phi-Bode
243
  - recogna-nlp/bode-13b-alpaca-pt-br
244
  - recogna-nlp/bode-7b-alpaca-pt-br
 
 
245
  - recogna-nlp/gembode-2b-ultraalpaca
 
246
  - recogna-nlp/internlmbode-7b
247
  - recogna-nlp/mistral-bode
 
248
  - recogna-nlp/phi-bode-2-ultraalpaca
 
 
 
249
  - rhaymison/Llama-portuguese-13b-Luana-v0.2
 
250
  - rhaymison/Mistral-portuguese-luana-7b
251
  - rhaymison/Mistral-portuguese-luana-7b-Mathematics
252
  - rhaymison/Mistral-portuguese-luana-7b-chat
@@ -282,6 +307,7 @@
282
  - tiiuae/falcon-7b
283
  - togethercomputer/RedPajama-INCITE-7B-Base
284
  - togethercomputer/RedPajama-INCITE-Base-3B-v1
 
285
  - upstage/SOLAR-10.7B-Instruct-v1.0
286
  - upstage/SOLAR-10.7B-v1.0
287
  - wandgibaut/periquito-3B
 
50
  - JJhooww/Mistral-7B-v0.2-Base_ptbr
51
  - JJhooww/MistralReloadBR_v2_ptbr
52
  - JJhooww/Mistral_Relora_Step2k
53
+ - JosephusCheung/LL7M
54
+ - M4-ai/tau-0.5B
55
+ - M4-ai/tau-0.5B-instruct-DPOP
56
+ - M4-ai/tau-1.8B
57
  - MagusCorp/legislinho
58
  - MaziyarPanahi/Mistral-7B-Instruct-Aya-101
59
+ - MulaBR/Mula-4x160-v0.1
60
  - NOVA-vision-language/GlorIA-1.3B
61
  - Nexusflow/Starling-LM-7B-beta
62
  - NousResearch/Nous-Hermes-13b
 
106
  - TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
107
  - Unbabel/TowerBase-7B-v0.1
108
  - Walmart-the-bag/Misted-v2-7B
109
+ - Walmart-the-bag/Quintellect-10.7B
110
  - Walmart-the-bag/WordWoven-2x7B
111
  - Weni/WeniGPT-2.2.3-Zephyr-7B-LLM_Base_2.0.3_SFT
112
  - Weni/WeniGPT-2.2.3-Zephyr-7B-merged-LLM_Base_2.0.3_SFT
 
120
  - Weni/ZeroShot-Multilanguage-Zephyr-7B
121
  - abacusai/Smaug-34B-v0.1
122
  - abacusai/Smaug-72B-v0.1
123
+ - adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.1
124
+ - adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.2
125
+ - adalbertojunior/Llama-3-8B-Instruct-Portuguese-v0.2-fft
126
  - allenai/OLMo-1B
127
  - allenai/OLMo-7B
128
  - allenai/OLMo-7B-Twin-2T
 
140
  - bigscience/bloom-3b
141
  - bigscience/bloom-560m
142
  - bigscience/bloom-7b1
143
+ - botbot-ai/CabraLlama3-8b
144
  - cnmoro/Mistral-7B-Portuguese
145
+ - cognitivecomputations/dolphin-2.9-llama3-8b
146
  - croissantllm/CroissantLLMBase
147
  - deepseek-ai/deepseek-llm-7b-base
148
  - deepseek-ai/deepseek-moe-16b-base
 
153
  - dynamofl/dynamo-8B-v0.1
154
  - eduagarcia/gemma-7b-it_no_chat_template
155
  - eduagarcia/gemma-7b-it_singleturn_chat_template
156
+ - ericzzz/falcon-rw-1b-instruct-openorca
157
  - facebook/opt-1.3b
158
  - facebook/opt-125m
159
  - facebook/opt-13b
 
189
  - internlm/internlm2-base-20b
190
  - internlm/internlm2-base-7b
191
  - internlm/internlm2-chat-1_8b
192
+ - internlm/internlm2-chat-1_8b-sft
193
  - internlm/internlm2-chat-20b
194
+ - internlm/internlm2-chat-20b-sft
195
  - internlm/internlm2-chat-7b
196
+ - internlm/internlm2-chat-7b-sft
197
  - josu/gpt-neo-pt-1.3B
198
  - josu/gpt-neo-pt-br
199
  - lmsys/vicuna-13b-v1.5
 
201
  - lrds-code/boana-7b-instruct
202
  - lrds-code/samba-1.1B
203
  - lucianosb/boto-7B
204
+ - lucianosb/boto-7B-v1.1
205
  - maritaca-ai/sabia-7b
206
  - matsuo-lab/weblab-10b
207
  - meta-llama/Llama-2-13b-chat-hf
 
216
  - microsoft/phi-1_5
217
  - microsoft/phi-2
218
  - mistral-community/Mistral-7B-v0.2
219
+ - mistral-community/Mixtral-8x22B-Instruct-v0.1-4bit
220
  - mistral-community/Mixtral-8x22B-v0.1-4bit
221
  - mistralai/Mistral-7B-Instruct-v0.2
222
  - mistralai/Mistral-7B-v0.1
 
259
  - recogna-nlp/Phi-Bode
260
  - recogna-nlp/bode-13b-alpaca-pt-br
261
  - recogna-nlp/bode-7b-alpaca-pt-br
262
+ - recogna-nlp/gembode-2b-base-ultraalpaca
263
+ - recogna-nlp/gembode-2b-base-ultraalpaca-qlora
264
  - recogna-nlp/gembode-2b-ultraalpaca
265
+ - recogna-nlp/gembode-2b-ultraalpaca-qlora
266
  - recogna-nlp/internlmbode-7b
267
  - recogna-nlp/mistral-bode
268
+ - recogna-nlp/mistralbode_7b_qlora_ultraalpaca
269
  - recogna-nlp/phi-bode-2-ultraalpaca
270
+ - recogna-nlp/qwenbode_1_8b_chat_ultraalpaca
271
+ - recogna-nlp/qwenbode_1_8b_chat_ultraalpaca_qlora
272
+ - recogna-nlp/zephyr_7b_beta_ultraalpaca
273
  - rhaymison/Llama-portuguese-13b-Luana-v0.2
274
+ - rhaymison/Mistral-8x7b-portuguese-luana
275
  - rhaymison/Mistral-portuguese-luana-7b
276
  - rhaymison/Mistral-portuguese-luana-7b-Mathematics
277
  - rhaymison/Mistral-portuguese-luana-7b-chat
 
307
  - tiiuae/falcon-7b
308
  - togethercomputer/RedPajama-INCITE-7B-Base
309
  - togethercomputer/RedPajama-INCITE-Base-3B-v1
310
+ - unsloth/mistral-7b-bnb-4bit
311
  - upstage/SOLAR-10.7B-Instruct-v1.0
312
  - upstage/SOLAR-10.7B-v1.0
313
  - wandgibaut/periquito-3B
src/display/utils.py CHANGED
@@ -193,11 +193,11 @@ class ModelDetails:
193
 
194
  class ModelType(Enum):
195
  PT = ModelDetails(name="pretrained", symbol="🟢")
196
- LA = ModelDetails(name="language adapted models (FP, FT, ...)", symbol="🆎")
197
  FT = ModelDetails(name="fine-tuned/fp on domain-specific datasets", symbol="🔶")
198
- chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="💬")
199
  merges = ModelDetails(name="base merges and moerges", symbol="🤝")
200
- proprietary = ModelDetails(name="proprietary models (closed)", symbol="🔒")
201
  Unknown = ModelDetails(name="", symbol="?")
202
 
203
  def to_str(self, separator=" "):
 
193
 
194
  class ModelType(Enum):
195
  PT = ModelDetails(name="pretrained", symbol="🟢")
196
+ LA = ModelDetails(name="language adapted (FP, FT, ...)", symbol="🆎")
197
  FT = ModelDetails(name="fine-tuned/fp on domain-specific datasets", symbol="🔶")
198
+ chat = ModelDetails(name="chat (RLHF, DPO, IFT, ...)", symbol="💬")
199
  merges = ModelDetails(name="base merges and moerges", symbol="🤝")
200
+ proprietary = ModelDetails(name="proprietary (closed)", symbol="🔒")
201
  Unknown = ModelDetails(name="", symbol="?")
202
 
203
  def to_str(self, separator=" "):
src/tools/collections.py CHANGED
@@ -4,6 +4,7 @@ import pandas as pd
4
  from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
5
  from huggingface_hub.utils._errors import HfHubHTTPError
6
  from pandas import DataFrame
 
7
 
8
  from src.display.utils import AutoEvalColumn, ModelType, NUMERIC_INTERVALS
9
  from src.envs import H4_TOKEN, PATH_TO_COLLECTION
@@ -29,50 +30,120 @@ def update_collections(df: DataFrame):
29
  params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
30
 
31
  cur_best_models = []
 
 
32
 
33
- ix = 0
34
- for type in ModelType:
35
- if type.value.name == "":
 
 
 
 
 
36
  continue
37
- for size in intervals:
38
- # We filter the df to gather the relevant models
39
- type_emoji = [t[0] for t in type.value.symbol]
40
- filtered_df = df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
41
 
42
- numeric_interval = pd.IntervalIndex([intervals[size]])
43
- mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
44
- filtered_df = filtered_df.loc[mask]
 
 
45
 
46
- best_models = list(
47
- filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.dummy.name]
48
- )
49
- print(type.value.symbol, size, best_models[:10])
50
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  # We add them one by one to the leaderboard
52
- for model in best_models:
53
- ix += 1
54
- cur_len_collection = len(collection.items)
 
 
 
 
 
55
  try:
56
  collection = add_collection_item(
57
  PATH_TO_COLLECTION,
58
  item_id=model,
59
  item_type="model",
60
  exists_ok=True,
61
- note=f"Best {type.to_str(' ')} model of around {size} on the leaderboard today!",
62
  token=H4_TOKEN,
63
  )
64
- if (
65
- len(collection.items) > cur_len_collection
66
- ): # we added an item - we make sure its position is correct
67
- item_object_id = collection.items[-1].item_object_id
68
- update_collection_item(
69
- collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix
70
- )
71
- cur_len_collection = len(collection.items)
72
  cur_best_models.append(model)
 
 
 
 
73
  break
74
  except HfHubHTTPError:
75
  continue
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
77
  collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN)
78
  for item in collection.items:
 
4
  from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item
5
  from huggingface_hub.utils._errors import HfHubHTTPError
6
  from pandas import DataFrame
7
+ import numpy as np
8
 
9
  from src.display.utils import AutoEvalColumn, ModelType, NUMERIC_INTERVALS
10
  from src.envs import H4_TOKEN, PATH_TO_COLLECTION
 
30
  params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
31
 
32
  cur_best_models = []
33
+ cur_best_scores = []
34
+ scores_per_type = {'pretrained': 0, 'other': 0, 'language': 0}
35
 
36
+ types_to_consider = [('pretrained', [ModelType.PT]), ('other', [ModelType.LA, ModelType.FT, ModelType.chat])]
37
+
38
+ for item in collection.items:
39
+ try:
40
+ delete_collection_item(
41
+ collection_slug=PATH_TO_COLLECTION, item_object_id=item.item_object_id, token=H4_TOKEN
42
+ )
43
+ except HfHubHTTPError:
44
  continue
 
 
 
 
45
 
46
+ ix = 0
47
+ for size in intervals:
48
+ interval_scores = []
49
+ interval_itens_languages = []
50
+ interval_itens = []
51
 
52
+ numeric_interval = pd.IntervalIndex([intervals[size]])
53
+ mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
54
+ size_df = df.loc[mask]
 
55
 
56
+ for model_type, types in types_to_consider:
57
+ type_emojis = []
58
+ for type in types:
59
+ if type.value.name == "":
60
+ continue
61
+ type_emoji = [t[0] for t in type.value.symbol]
62
+ type_emojis.extend(type_emoji)
63
+ filtered_df = size_df[size_df[AutoEvalColumn.model_type_symbol.name].isin(type_emojis)]
64
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.average.name].astype(float) > scores_per_type[model_type]]
65
+
66
+ best_models = filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)
67
+ print(type_emojis, size, list(best_models[AutoEvalColumn.dummy.name])[:10])
68
  # We add them one by one to the leaderboard
69
+ for i, row in best_models.iterrows():
70
+ model = row[AutoEvalColumn.dummy.name]
71
+ score = row[AutoEvalColumn.average.name]
72
+ language = row[AutoEvalColumn.main_language.name]
73
+ if language == 'Portuguese':
74
+ note = f"Best Portuguese {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})"
75
+ else:
76
+ note = f"Best {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})"
77
  try:
78
  collection = add_collection_item(
79
  PATH_TO_COLLECTION,
80
  item_id=model,
81
  item_type="model",
82
  exists_ok=True,
83
+ note=note,
84
  token=H4_TOKEN,
85
  )
86
+ ix += 1
87
+ item_object_id = collection.items[-1].item_object_id
 
 
 
 
 
 
88
  cur_best_models.append(model)
89
+ interval_scores.append(float(score))
90
+ interval_itens_languages.append(language)
91
+ interval_itens.append(item_object_id)
92
+ scores_per_type[model_type] = float(score)
93
  break
94
  except HfHubHTTPError:
95
  continue
96
+ if 'Portuguese' not in interval_itens_languages:
97
+ language = ['Portuguese']
98
+ model_type = 'language'
99
+ filtered_df = size_df[size_df[AutoEvalColumn.main_language.name].isin(language)]
100
+ filtered_df = filtered_df[filtered_df[AutoEvalColumn.average.name].astype(float) > scores_per_type[model_type]]
101
+
102
+ best_models = filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)
103
+ print(language, size, list(best_models[AutoEvalColumn.dummy.name])[:10])
104
+ # We add them one by one to the leaderboard
105
+ for i, row in best_models.iterrows():
106
+ model = row[AutoEvalColumn.dummy.name]
107
+ score = row[AutoEvalColumn.average.name]
108
+ language = row[AutoEvalColumn.main_language.name]
109
+
110
+ if language == 'Portuguese':
111
+ note = f"Best Portuguese {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})"
112
+ else:
113
+ note = f"Best {type.to_str(' ')} model of around {size} on the leaderboard today! (Score: {score})"
114
+ try:
115
+ collection = add_collection_item(
116
+ PATH_TO_COLLECTION,
117
+ item_id=model,
118
+ item_type="model",
119
+ exists_ok=True,
120
+ note=note,
121
+ token=H4_TOKEN,
122
+ )
123
+ ix += 1
124
+ item_object_id = collection.items[-1].item_object_id
125
+ cur_best_models.append(model)
126
+ interval_scores.append(float(score))
127
+ interval_itens_languages.append(language)
128
+ interval_itens.append(item_object_id)
129
+ scores_per_type[model_type] = float(score)
130
+ break
131
+ except HfHubHTTPError:
132
+ continue
133
+ # fix order:
134
+ starting_idx = len(cur_best_models)
135
+ k = 0
136
+ for i in np.argsort(interval_scores):
137
+ if i == k:
138
+ continue
139
+ else:
140
+ try:
141
+ update_collection_item(
142
+ collection_slug=PATH_TO_COLLECTION, item_object_id=interval_itens[i], position=starting_idx+k
143
+ )
144
+ except:
145
+ pass
146
+ k += 1
147
 
148
  collection = get_collection(PATH_TO_COLLECTION, token=H4_TOKEN)
149
  for item in collection.items: