Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import numpy as np | |
import random | |
import spaces | |
import torch | |
#from diffusers import DiffusionPipeline | |
from diffusers import AutoPipelineForImage2Image | |
from huggingface_hub import InferenceClient | |
dtype = torch.bfloat16 | |
device = "cuda" | |
#if torch.cuda.is_available() else "cpu" | |
#pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device) | |
sdxl = InferenceClient(model="stabilityai/stable-diffusion-xl-base-1.0", token=os.environ['HF_TOKEN']) | |
print('sdxl loaded') | |
"kandinsky-community/kandinsky-2-2-decoder" | |
#pipeline2Image = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", torch_dtypes=torch.bfloat16).to(device) | |
#pipeline2Image = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtypes=torch.bfloat16).to(device) | |
pipeline2Image = AutoPipelineForImage2Image.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=dtype) | |
pipeline2Image.enable_model_cpu_offload() | |
print("pipeline 2 image loaded") | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# (duration=190) | |
#@spaces.GPU | |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# generator = torch.Generator().manual_seed(seed) | |
# image = pipe( | |
# prompt=prompt, | |
# width=width, | |
# height=height, | |
# num_inference_steps=num_inference_steps, | |
# generator=generator, | |
# guidance_scale=guidance_scale | |
# ).images[0] | |
image = sdxl.text_to_image( | |
prompt, | |
guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, seed=seed,width=width, height=height | |
) | |
return image, seed | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 [dev] | |
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) | |
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=[prompt], | |
outputs=[result, seed], | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed] | |
) | |
# Adding image input options at the bottom | |
gr.Markdown("## Upload or select an additional image") | |
with gr.Row(): | |
uploaded_image = gr.Image(label="Upload Image", type="pil") | |
image_url = gr.Textbox(label="Image URL", placeholder="Enter image URL") | |
use_generated_image = gr.Button("Use Generated Image") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed2 = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed2 = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width2 = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height2 = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
strength2 = gr.Slider( | |
label="Strength", | |
minimum=.1, | |
maximum=1, | |
step=0.1, | |
value=.5, | |
) | |
guidance_scale2 = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps2 = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
prompt2 = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run2_button = gr.Button("Run", scale=0) | |
additional_image_output = gr.Image(label="Selected Image", show_label=False) | |
def select_image(uploaded_image, image_url, use_generated=False): | |
if use_generated: | |
return result.value | |
elif uploaded_image is not None: | |
return uploaded_image | |
elif image_url: | |
try: | |
img = gr.Image.load(image_url) | |
return img | |
except Exception as e: | |
return f"Failed to load image from URL: {e}" | |
return None | |
def image2image(uploaded_image, image_url, use_generated=False): | |
image = select_image(uploaded_image, image_url, use_generated=use_generated) | |
#prompt = "one awesome dude" | |
#generator = torch.Generator(device=device).manual_seed(1024) | |
#image = pipeline2Image(prompt=prompt, image=image, strength=0.75, guidance_scale=7.5, generator=generator).images[0] | |
return image | |
use_generated_image.click(fn=lambda: image2image(None, None, True), inputs=[], outputs=additional_image_output) | |
uploaded_image.change(fn=image2image, inputs=[uploaded_image, image_url, gr.State(False)], outputs=additional_image_output) | |
image_url.submit(fn=image2image, inputs=[uploaded_image, image_url, gr.State(False)], outputs=additional_image_output) | |
def infer2(prompt, image, seed=42, randomize_seed=False, width=1024, height=1024, strength=.5, guidance_scale=5.0, num_inference_steps=28): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator(device=device).manual_seed(seed) | |
image2 = pipeline2Image(prompt=prompt, image=image, strength=strength, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator).images[0] | |
# generator = torch.Generator().manual_seed(seed) | |
# image = pipe( | |
# prompt=prompt, | |
# width=width, | |
# height=height, | |
# num_inference_steps=num_inference_steps, | |
# generator=generator, | |
# guidance_scale=guidance_scale | |
# ).images[0] | |
return image2, seed | |
final_image_output = gr.Image(label="Final Image", show_label=False) | |
gr.on( | |
triggers=[run2_button.click, prompt2.submit], | |
fn=infer2, | |
inputs=[prompt2, torch.from_numpy(additional_image_output), seed2, randomize_seed2, width2, height2, strength2, guidance_scale2, num_inference_steps2], | |
outputs=[final_image_output, seed2] | |
) | |
demo.launch() | |