educrpg commited on
Commit
5f87ad8
β€’
1 Parent(s): 3394b4a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -49
app.py CHANGED
@@ -1,62 +1,53 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- #import spaces #[uncomment to use ZeroGPU]
5
- from diffusers import DiffusionPipeline
6
  import torch
 
 
7
 
 
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
- model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
10
 
11
- if torch.cuda.is_available():
12
- torch_dtype = torch.float16
13
- else:
14
- torch_dtype = torch.float32
15
-
16
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
17
- pipe = pipe.to(device)
18
 
19
  MAX_SEED = np.iinfo(np.int32).max
20
- MAX_IMAGE_SIZE = 1024
21
-
22
- #@spaces.GPU #[uncomment to use ZeroGPU]
23
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
24
 
 
 
25
  if randomize_seed:
26
  seed = random.randint(0, MAX_SEED)
27
-
28
  generator = torch.Generator().manual_seed(seed)
29
-
30
  image = pipe(
31
  prompt = prompt,
32
- negative_prompt = negative_prompt,
33
- guidance_scale = guidance_scale,
34
- num_inference_steps = num_inference_steps,
35
- width = width,
36
  height = height,
37
- generator = generator
 
 
38
  ).images[0]
39
-
40
  return image, seed
41
-
42
  examples = [
43
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
44
- "An astronaut riding a green horse",
45
- "A delicious ceviche cheesecake slice",
46
  ]
47
 
48
  css="""
49
  #col-container {
50
  margin: 0 auto;
51
- max-width: 640px;
52
  }
53
  """
54
 
55
  with gr.Blocks(css=css) as demo:
56
 
57
  with gr.Column(elem_id="col-container"):
58
- gr.Markdown(f"""
59
- # Text-to-Image Gradio Template
 
60
  """)
61
 
62
  with gr.Row():
@@ -72,16 +63,9 @@ with gr.Blocks(css=css) as demo:
72
  run_button = gr.Button("Run", scale=0)
73
 
74
  result = gr.Image(label="Result", show_label=False)
75
-
76
  with gr.Accordion("Advanced Settings", open=False):
77
 
78
- negative_prompt = gr.Text(
79
- label="Negative prompt",
80
- max_lines=1,
81
- placeholder="Enter a negative prompt",
82
- visible=False,
83
- )
84
-
85
  seed = gr.Slider(
86
  label="Seed",
87
  minimum=0,
@@ -99,7 +83,7 @@ with gr.Blocks(css=css) as demo:
99
  minimum=256,
100
  maximum=MAX_IMAGE_SIZE,
101
  step=32,
102
- value=1024, #Replace with defaults that work for your model
103
  )
104
 
105
  height = gr.Slider(
@@ -107,36 +91,40 @@ with gr.Blocks(css=css) as demo:
107
  minimum=256,
108
  maximum=MAX_IMAGE_SIZE,
109
  step=32,
110
- value=1024, #Replace with defaults that work for your model
111
  )
112
 
113
  with gr.Row():
114
-
115
  guidance_scale = gr.Slider(
116
- label="Guidance scale",
117
- minimum=0.0,
118
- maximum=10.0,
119
  step=0.1,
120
- value=0.0, #Replace with defaults that work for your model
121
  )
122
-
123
  num_inference_steps = gr.Slider(
124
  label="Number of inference steps",
125
  minimum=1,
126
  maximum=50,
127
  step=1,
128
- value=2, #Replace with defaults that work for your model
129
  )
130
 
131
  gr.Examples(
132
  examples = examples,
133
- inputs = [prompt]
 
 
 
134
  )
 
135
  gr.on(
136
  triggers=[run_button.click, prompt.submit],
137
  fn = infer,
138
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
139
  outputs = [result, seed]
140
  )
141
 
142
- demo.queue().launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+ import spaces
 
5
  import torch
6
+ from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
7
+ from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
 
9
+ dtype = torch.bfloat16
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
11
 
12
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
 
 
 
 
 
 
13
 
14
  MAX_SEED = np.iinfo(np.int32).max
15
+ MAX_IMAGE_SIZE = 2048
 
 
 
16
 
17
+ @spaces.GPU(duration=190)
18
+ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
19
  if randomize_seed:
20
  seed = random.randint(0, MAX_SEED)
 
21
  generator = torch.Generator().manual_seed(seed)
 
22
  image = pipe(
23
  prompt = prompt,
24
+ width = width,
 
 
 
25
  height = height,
26
+ num_inference_steps = num_inference_steps,
27
+ generator = generator,
28
+ guidance_scale=guidance_scale
29
  ).images[0]
 
30
  return image, seed
31
+
32
  examples = [
33
+ "a tiny astronaut hatching from an egg on the moon",
34
+ "a cat holding a sign that says hello world",
35
+ "an anime illustration of a wiener schnitzel",
36
  ]
37
 
38
  css="""
39
  #col-container {
40
  margin: 0 auto;
41
+ max-width: 520px;
42
  }
43
  """
44
 
45
  with gr.Blocks(css=css) as demo:
46
 
47
  with gr.Column(elem_id="col-container"):
48
+ gr.Markdown(f"""# FLUX.1 [dev]
49
+ 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
50
+ [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
51
  """)
52
 
53
  with gr.Row():
 
63
  run_button = gr.Button("Run", scale=0)
64
 
65
  result = gr.Image(label="Result", show_label=False)
66
+
67
  with gr.Accordion("Advanced Settings", open=False):
68
 
 
 
 
 
 
 
 
69
  seed = gr.Slider(
70
  label="Seed",
71
  minimum=0,
 
83
  minimum=256,
84
  maximum=MAX_IMAGE_SIZE,
85
  step=32,
86
+ value=1024,
87
  )
88
 
89
  height = gr.Slider(
 
91
  minimum=256,
92
  maximum=MAX_IMAGE_SIZE,
93
  step=32,
94
+ value=1024,
95
  )
96
 
97
  with gr.Row():
98
+
99
  guidance_scale = gr.Slider(
100
+ label="Guidance Scale",
101
+ minimum=1,
102
+ maximum=15,
103
  step=0.1,
104
+ value=3.5,
105
  )
106
+
107
  num_inference_steps = gr.Slider(
108
  label="Number of inference steps",
109
  minimum=1,
110
  maximum=50,
111
  step=1,
112
+ value=28,
113
  )
114
 
115
  gr.Examples(
116
  examples = examples,
117
+ fn = infer,
118
+ inputs = [prompt],
119
+ outputs = [result, seed],
120
+ cache_examples="lazy"
121
  )
122
+
123
  gr.on(
124
  triggers=[run_button.click, prompt.submit],
125
  fn = infer,
126
+ inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
127
  outputs = [result, seed]
128
  )
129
 
130
+ demo.launch()