Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,53 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
from diffusers import DiffusionPipeline
|
6 |
import torch
|
|
|
|
|
7 |
|
|
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
|
10 |
|
11 |
-
|
12 |
-
torch_dtype = torch.float16
|
13 |
-
else:
|
14 |
-
torch_dtype = torch.float32
|
15 |
-
|
16 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
17 |
-
pipe = pipe.to(device)
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
-
MAX_IMAGE_SIZE =
|
21 |
-
|
22 |
-
#@spaces.GPU #[uncomment to use ZeroGPU]
|
23 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
24 |
|
|
|
|
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
-
|
28 |
generator = torch.Generator().manual_seed(seed)
|
29 |
-
|
30 |
image = pipe(
|
31 |
prompt = prompt,
|
32 |
-
|
33 |
-
guidance_scale = guidance_scale,
|
34 |
-
num_inference_steps = num_inference_steps,
|
35 |
-
width = width,
|
36 |
height = height,
|
37 |
-
|
|
|
|
|
38 |
).images[0]
|
39 |
-
|
40 |
return image, seed
|
41 |
-
|
42 |
examples = [
|
43 |
-
"
|
44 |
-
"
|
45 |
-
"
|
46 |
]
|
47 |
|
48 |
css="""
|
49 |
#col-container {
|
50 |
margin: 0 auto;
|
51 |
-
max-width:
|
52 |
}
|
53 |
"""
|
54 |
|
55 |
with gr.Blocks(css=css) as demo:
|
56 |
|
57 |
with gr.Column(elem_id="col-container"):
|
58 |
-
gr.Markdown(f"""
|
59 |
-
|
|
|
60 |
""")
|
61 |
|
62 |
with gr.Row():
|
@@ -72,16 +63,9 @@ with gr.Blocks(css=css) as demo:
|
|
72 |
run_button = gr.Button("Run", scale=0)
|
73 |
|
74 |
result = gr.Image(label="Result", show_label=False)
|
75 |
-
|
76 |
with gr.Accordion("Advanced Settings", open=False):
|
77 |
|
78 |
-
negative_prompt = gr.Text(
|
79 |
-
label="Negative prompt",
|
80 |
-
max_lines=1,
|
81 |
-
placeholder="Enter a negative prompt",
|
82 |
-
visible=False,
|
83 |
-
)
|
84 |
-
|
85 |
seed = gr.Slider(
|
86 |
label="Seed",
|
87 |
minimum=0,
|
@@ -99,7 +83,7 @@ with gr.Blocks(css=css) as demo:
|
|
99 |
minimum=256,
|
100 |
maximum=MAX_IMAGE_SIZE,
|
101 |
step=32,
|
102 |
-
value=1024,
|
103 |
)
|
104 |
|
105 |
height = gr.Slider(
|
@@ -107,36 +91,40 @@ with gr.Blocks(css=css) as demo:
|
|
107 |
minimum=256,
|
108 |
maximum=MAX_IMAGE_SIZE,
|
109 |
step=32,
|
110 |
-
value=1024,
|
111 |
)
|
112 |
|
113 |
with gr.Row():
|
114 |
-
|
115 |
guidance_scale = gr.Slider(
|
116 |
-
label="Guidance
|
117 |
-
minimum=
|
118 |
-
maximum=
|
119 |
step=0.1,
|
120 |
-
value=
|
121 |
)
|
122 |
-
|
123 |
num_inference_steps = gr.Slider(
|
124 |
label="Number of inference steps",
|
125 |
minimum=1,
|
126 |
maximum=50,
|
127 |
step=1,
|
128 |
-
value=
|
129 |
)
|
130 |
|
131 |
gr.Examples(
|
132 |
examples = examples,
|
133 |
-
|
|
|
|
|
|
|
134 |
)
|
|
|
135 |
gr.on(
|
136 |
triggers=[run_button.click, prompt.submit],
|
137 |
fn = infer,
|
138 |
-
inputs = [prompt,
|
139 |
outputs = [result, seed]
|
140 |
)
|
141 |
|
142 |
-
demo.
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import spaces
|
|
|
5 |
import torch
|
6 |
+
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
|
7 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
8 |
|
9 |
+
dtype = torch.bfloat16
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
11 |
|
12 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
+
MAX_IMAGE_SIZE = 2048
|
|
|
|
|
|
|
16 |
|
17 |
+
@spaces.GPU(duration=190)
|
18 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
19 |
if randomize_seed:
|
20 |
seed = random.randint(0, MAX_SEED)
|
|
|
21 |
generator = torch.Generator().manual_seed(seed)
|
|
|
22 |
image = pipe(
|
23 |
prompt = prompt,
|
24 |
+
width = width,
|
|
|
|
|
|
|
25 |
height = height,
|
26 |
+
num_inference_steps = num_inference_steps,
|
27 |
+
generator = generator,
|
28 |
+
guidance_scale=guidance_scale
|
29 |
).images[0]
|
|
|
30 |
return image, seed
|
31 |
+
|
32 |
examples = [
|
33 |
+
"a tiny astronaut hatching from an egg on the moon",
|
34 |
+
"a cat holding a sign that says hello world",
|
35 |
+
"an anime illustration of a wiener schnitzel",
|
36 |
]
|
37 |
|
38 |
css="""
|
39 |
#col-container {
|
40 |
margin: 0 auto;
|
41 |
+
max-width: 520px;
|
42 |
}
|
43 |
"""
|
44 |
|
45 |
with gr.Blocks(css=css) as demo:
|
46 |
|
47 |
with gr.Column(elem_id="col-container"):
|
48 |
+
gr.Markdown(f"""# FLUX.1 [dev]
|
49 |
+
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
50 |
+
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
51 |
""")
|
52 |
|
53 |
with gr.Row():
|
|
|
63 |
run_button = gr.Button("Run", scale=0)
|
64 |
|
65 |
result = gr.Image(label="Result", show_label=False)
|
66 |
+
|
67 |
with gr.Accordion("Advanced Settings", open=False):
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
seed = gr.Slider(
|
70 |
label="Seed",
|
71 |
minimum=0,
|
|
|
83 |
minimum=256,
|
84 |
maximum=MAX_IMAGE_SIZE,
|
85 |
step=32,
|
86 |
+
value=1024,
|
87 |
)
|
88 |
|
89 |
height = gr.Slider(
|
|
|
91 |
minimum=256,
|
92 |
maximum=MAX_IMAGE_SIZE,
|
93 |
step=32,
|
94 |
+
value=1024,
|
95 |
)
|
96 |
|
97 |
with gr.Row():
|
98 |
+
|
99 |
guidance_scale = gr.Slider(
|
100 |
+
label="Guidance Scale",
|
101 |
+
minimum=1,
|
102 |
+
maximum=15,
|
103 |
step=0.1,
|
104 |
+
value=3.5,
|
105 |
)
|
106 |
+
|
107 |
num_inference_steps = gr.Slider(
|
108 |
label="Number of inference steps",
|
109 |
minimum=1,
|
110 |
maximum=50,
|
111 |
step=1,
|
112 |
+
value=28,
|
113 |
)
|
114 |
|
115 |
gr.Examples(
|
116 |
examples = examples,
|
117 |
+
fn = infer,
|
118 |
+
inputs = [prompt],
|
119 |
+
outputs = [result, seed],
|
120 |
+
cache_examples="lazy"
|
121 |
)
|
122 |
+
|
123 |
gr.on(
|
124 |
triggers=[run_button.click, prompt.submit],
|
125 |
fn = infer,
|
126 |
+
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
127 |
outputs = [result, seed]
|
128 |
)
|
129 |
|
130 |
+
demo.launch()
|