edugp's picture
Sync with data tooling repo, using edugp/kenlm models, updating viz to use quantiles for coloring and ad-hoc viz for the registry dataset
3c30fa3
from functools import partial
import numpy as np
import pandas as pd
from datasets import load_dataset
from tqdm import tqdm
from perplexity_lenses import REGISTRY_DATASET
from perplexity_lenses.perplexity import KenlmModel
def hub_dataset_to_dataframe(
path: str,
name: str,
split: str,
sample: int,
text_column: str,
model: KenlmModel,
seed: int = 0,
doc_type: str = "Whole document",
) -> pd.DataFrame:
load_dataset_fn = partial(load_dataset, path=path)
if name:
load_dataset_fn = partial(load_dataset_fn, name=name)
# Special case for the registry dataset
if path == REGISTRY_DATASET:
load_dataset_fn = partial(load_dataset_fn, data_files=f"{name}/*")
if split:
load_dataset_fn = partial(load_dataset_fn, split=split)
dataset = load_dataset_fn(streaming=True).shuffle(buffer_size=10000, seed=seed)
if doc_type.lower() == "sentence":
dataset = dataset.map(
lambda x: [
{
text_column: sentence,
"perplexity": model.get_perplexity(sentence),
"label": x.get("labels", [])[0]
if len(x.get("labels", [])) > 0
else "NONE", # Special case for registry dataset
}
for sentence in x[text_column].split("\n")
]
)
else:
dataset = dataset.map(
lambda x: {
text_column: x[text_column],
"perplexity": model.get_perplexity(x[text_column]),
"label": x.get("labels", [])[0]
if len(x.get("labels", [])) > 0
else "NONE", # Special case for registry dataset
}
)
instances = []
count = 0
for instance in tqdm(dataset, total=sample):
if isinstance(instance, list):
for sentence in instance:
instances.append(sentence)
count += 1
if count == sample:
break
else:
instances.append(instance)
count += 1
if count == sample:
break
return pd.DataFrame(instances)
def documents_df_to_sentences_df(
df: pd.DataFrame, text_column: str, sample: int, seed: int = 0
):
df_sentences = pd.DataFrame(
{
text_column: np.array(
df[text_column].map(lambda x: x.split("\n")).values.tolist()
).flatten()
}
)
return df_sentences.sample(min(sample, df_sentences.shape[0]), random_state=seed)