Spaces:
Runtime error
Runtime error
import os | |
import re | |
import unicodedata | |
from typing import Dict | |
from requests.exceptions import HTTPError | |
import kenlm | |
import sentencepiece | |
from huggingface_hub import cached_download, hf_hub_url | |
KENLM_MODEL_REPO = "edugp/kenlm" | |
class SentencePiece: | |
def __init__( | |
self, | |
model: str, | |
): | |
super().__init__() | |
self.sp = sentencepiece.SentencePieceProcessor() | |
self.sp.load(str(model)) | |
def do(self, text: dict) -> dict: | |
tokenized = self.sp.encode_as_pieces(text) | |
return " ".join(tokenized) | |
class KenlmModel: | |
digit_re: re.Pattern = re.compile(r"\d") | |
unicode_punct: Dict[str, str] = { | |
",": ",", | |
"。": ".", | |
"、": ",", | |
"„": '"', | |
"”": '"', | |
"“": '"', | |
"«": '"', | |
"»": '"', | |
"1": '"', | |
"」": '"', | |
"「": '"', | |
"《": '"', | |
"》": '"', | |
"´": "'", | |
"∶": ":", | |
":": ":", | |
"?": "?", | |
"!": "!", | |
"(": "(", | |
")": ")", | |
";": ";", | |
"–": "-", | |
"—": " - ", | |
".": ". ", | |
"~": "~", | |
"’": "'", | |
"…": "...", | |
"━": "-", | |
"〈": "<", | |
"〉": ">", | |
"【": "[", | |
"】": "]", | |
"%": "%", | |
"►": "-", | |
} | |
unicode_punct_re = re.compile(f"[{''.join(unicode_punct.keys())}]") | |
non_printing_chars_re = re.compile( | |
f"[{''.join(map(chr, list(range(0,32)) + list(range(127,160))))}]" | |
) | |
kenlm_model_dir = None | |
sentence_piece_model_dir = None | |
def __init__( | |
self, | |
model_dataset: str, | |
language: str, | |
lower_case: bool = False, | |
remove_accents: bool = False, | |
normalize_numbers: bool = True, | |
punctuation: int = 1, | |
): | |
self.download_kenlm_model(model_dataset, language) | |
try: | |
self.model = kenlm.Model(self.kenlm_model_dir) | |
self.tokenizer = SentencePiece(self.sentence_piece_model_dir) | |
except OSError: | |
os.remove(self.kenlm_model_dir) | |
if os.path.exists(self.sentence_piece_model_dir): | |
os.remove(self.sentence_piece_model_dir) | |
raise OSError( | |
"File was corrupt and should have been removed. Please, retry." | |
) | |
self.accent = remove_accents | |
self.case = lower_case | |
self.numbers = normalize_numbers | |
self.punct = punctuation | |
def from_pretrained( | |
cls, | |
model_dataset: str, | |
language: str, | |
lower_case: bool, | |
remove_accents: bool, | |
normalize_numbers: bool, | |
punctuation: int, | |
): | |
return cls( | |
model_dataset, | |
language, | |
lower_case, | |
remove_accents, | |
normalize_numbers, | |
punctuation, | |
) | |
def pp(self, log_score, length): | |
return 10.0 ** (-log_score / length) | |
def get_perplexity(self, doc: str, normalize_cc_net: bool = True): | |
if normalize_cc_net: | |
doc = self.normalize( | |
doc, | |
accent=self.accent, | |
case=self.case, | |
numbers=self.numbers, | |
punct=self.punct, | |
) | |
# Tokenize (after normalizing): See https://github.com/facebookresearch/cc_net/blob/bda555bd1cf1ee2e0b925363e62a61cd46c8b60d/cc_net/mine.py#L352 for full pipeline | |
doc = self.tokenizer.do(doc) | |
doc_log_score, doc_length = 0, 0 | |
for line in doc.split("\n"): | |
log_score = self.model.score(line) | |
length = len(line.split()) + 1 | |
doc_log_score += log_score | |
doc_length += length | |
return round(self.pp(doc_log_score, doc_length), 1) | |
def normalize( | |
self, | |
line: str, | |
accent: bool = True, | |
case: bool = True, | |
numbers: bool = True, | |
punct: int = 1, | |
) -> str: | |
line = line.strip() | |
if not line: | |
return line | |
if case: | |
line = line.lower() | |
if accent: | |
line = self.strip_accents(line) | |
if numbers: | |
line = self.digit_re.sub("0", line) | |
if punct == 1: | |
line = self.replace_unicode_punct(line) | |
elif punct == 2: | |
line = self.remove_unicode_punct(line) | |
line = self.remove_non_printing_char(line) | |
return line | |
def strip_accents(self, line: str) -> str: | |
"""Strips accents from a piece of text.""" | |
nfd = unicodedata.normalize("NFD", line) | |
output = [c for c in nfd if unicodedata.category(c) != "Mn"] | |
if len(output) == line: | |
return line | |
return "".join(output) | |
def replace_unicode_punct(self, text: str) -> str: | |
return "".join(self.unicode_punct.get(c, c) for c in text) | |
def remove_unicode_punct(self, text: str) -> str: | |
"""More aggressive version of replace_unicode_punct but also faster.""" | |
return self.unicode_punct_re.sub("", text) | |
def remove_non_printing_char(self, text: str) -> str: | |
return self.non_printing_chars_re.sub("", text) | |
def download_kenlm_model(self, model_dataset: str, language: str): | |
try: | |
kenlm_model_url = hf_hub_url( | |
KENLM_MODEL_REPO, filename=f"{model_dataset}/{language}.arpa.trie.bin" | |
) | |
self.kenlm_model_dir = cached_download(kenlm_model_url) | |
except HTTPError: | |
kenlm_model_url = hf_hub_url( | |
KENLM_MODEL_REPO, filename=f"{model_dataset}/{language}.arpa.bin" | |
) | |
self.kenlm_model_dir = cached_download(kenlm_model_url) | |
sentence_piece_model_url = hf_hub_url( | |
KENLM_MODEL_REPO, filename=f"{model_dataset}/{language}.sp.model" | |
) | |
self.sentence_piece_model_dir = cached_download(sentence_piece_model_url) | |