Spaces:
Runtime error
Runtime error
from transformers import pipeline, AutoTokenizer, AutoModelWithLMHead, TranslationPipeline | |
import gradio as gr | |
pipe = pipeline(model="torileatherman/train_first_try") # change to "your-username/the-name-you-picked" | |
def transcribe(audio): | |
text = pipe(audio)["text"] | |
return text | |
translation_pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_en"), | |
tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_en", | |
do_lower_case=False, | |
skip_special_tokens=True), | |
device=0) | |
def translate(text): | |
translation = translation_pipeline([text], max_length=512) | |
return translation | |
demo = gr.Blocks() | |
with demo: | |
title="Whisper Small Swedish", | |
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model." | |
inputs_audio = gr.Audio(source="microphone", type="filepath"), | |
text = gr.Textbox() | |
translation = gr.Label() | |
b1 = gr.Button("Record audio") | |
b2 = gr.Button("Translate text") | |
b1.click(transcribe, inputs=inputs_audio, outputs=text) | |
b2.click(translate, inputs=text, outputs=translation) | |
demo.launch() |