from transformers import pipeline, AutoTokenizer, AutoModelWithLMHead, TranslationPipeline import gradio as gr pipe = pipeline(model="torileatherman/train_first_try") # change to "your-username/the-name-you-picked" def transcribe(audio): text = pipe(audio)["text"] return text translation_pipeline = TranslationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_sv_en"), tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_sv_en", do_lower_case=False, skip_special_tokens=True), device=0) def translate(text): translation = translation_pipeline([text], max_length=512) return translation demo = gr.Blocks() with demo: title="Whisper Small Swedish", description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model." inputs_audio = gr.Audio(source="microphone", type="filepath"), text = gr.Textbox() translation = gr.Label() b1 = gr.Button("Record audio") b2 = gr.Button("Translate text") b1.click(transcribe, inputs=inputs_audio, outputs=text) b2.click(translate, inputs=text, outputs=translation) demo.launch()