import streamlit as st from functions_preprocess import LinguisticPreprocessor import pickle import nltk nltk.download('stopwords') download_if_non_existent('corpora/stopwords', 'stopwords') download_if_non_existent('taggers/averaged_perceptron_tagger', 'averaged_perceptron_tagger') download_if_non_existent('corpora/wordnet', 'wordnet') #################################################################### Streamlit interface st.title("Movie Reviews: An NLP Sentiment analysis") st.markdown("### NLP Processing utilizing various ML approaches") st.markdown("##### This initial approach merges multiple datasets, processed through a TF-IDF vectorizer with 2 n-grams and fed into a Stochastic Gradient Descent model.") st.markdown("Give it a go by writing a positive or negative text, and analyze it!") #################################################################### Cache the model loading @st.cache_data() def load_model(): model_pkl_file = "sentiment_model.pkl" with open(model_pkl_file, 'rb') as file: model = pickle.load(file) return model model = load_model() processor = LinguisticPreprocessor() def predict_sentiment(text, model): processor.transform(text) prediction = model.predict([text]) return prediction ############################################################# Text input user_input = st.text_area("Enter text here...") if st.button('Analyze'): # Displaying output result = predict_sentiment(user_input, model) if result >= 0.5: st.write('The sentiment is: Positive 😀') else: st.write('The sentiment is: Negative 😞') st.caption("Por @efeperro con ❤️. Credits to 🤗")