File size: 13,202 Bytes
0b43831 0e1487a 0b43831 395a84b 799789f 0b43831 799789f 0b43831 395a84b 0b43831 799789f 0b43831 395a84b 799789f 395a84b 0b43831 799789f 0b43831 395a84b 0b43831 218c37d 0b43831 395a84b 0b43831 218c37d 0b43831 218c37d 395a84b 218c37d 395a84b 218c37d 0b43831 218c37d 0e1487a 0b43831 e7b3a9f 0e1487a e7b3a9f 395a84b e7b3a9f 0b43831 df84aed 0b43831 0e1487a 0b43831 218c37d 0b43831 42a21dd 0b43831 0e1487a 561ab5b 0e1487a 8a358d3 0e1487a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import os
import json
import numpy as np
import ffmpeg
import whisper
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from sklearn.tree import DecisionTreeRegressor
import torch
import youtube_dl
import pandas as pd
import streamlit as st
import altair as alt
DATA_DIR = "./data"
if not os.path.exists(DATA_DIR):
os.makedirs(DATA_DIR)
YDL_OPTS = {
"download_archive": os.path.join(DATA_DIR, "archive.txt"),
"format": "bestaudio/best",
"outtmpl": os.path.join(DATA_DIR, "%(title)s.%(ext)s"),
"postprocessors": [
{
"key": "FFmpegExtractAudio",
"preferredcodec": "mp3",
"preferredquality": "192",
}
],
}
llm = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
device = "cuda" if torch.cuda.is_available() else "cpu"
def download(url, ydl_opts):
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
result = ydl.extract_info("{}".format(url))
fname = ydl.prepare_filename(result)
return fname
def transcribe(audio_path, transcript_path):
if os.path.exists(transcript_path):
with open(transcript_path, "r") as f:
result = json.load(f)
else:
whisper_model = whisper.load_model("base")
result = whisper_model.transcribe(audio_path)
with open(transcript_path, "w") as f:
json.dump(result, f)
return result["segments"]
def compute_seg_durations(segments):
return [s["end"] - s["start"] for s in segments]
def compute_info_densities(
segments, seg_durations, llm, tokenizer, device, ctxt_len=512
):
seg_encodings = [tokenizer(seg["text"], return_tensors="pt") for seg in segments]
input_ids = [enc.input_ids.to(device) for enc in seg_encodings]
seg_lens = [x.shape[1] for x in input_ids]
cat_input_ids = torch.cat(input_ids, axis=1)
end = 0
seg_nlls = []
n = cat_input_ids.shape[1]
for i, seg_len in enumerate(seg_lens):
end = min(n, end + seg_len)
start = max(0, end - ctxt_len)
ctxt_ids = cat_input_ids[:, start:end]
target_ids = ctxt_ids.clone()
target_ids[:, :-seg_len] = -100
avg_nll = llm(ctxt_ids, labels=target_ids).loss.detach().numpy()
nll = avg_nll * seg_len
seg_nlls.append(nll)
seg_nlls = np.array(seg_nlls)
info_densities = seg_nlls / seg_durations
return info_densities
def smooth_info_densities(info_densities, seg_durations, max_leaf_nodes, min_sec_leaf):
min_samples_leaf = int(np.ceil(min_sec_leaf / np.mean(seg_durations)))
tree = DecisionTreeRegressor(
max_leaf_nodes=max_leaf_nodes, min_samples_leaf=min_samples_leaf
)
X = np.arange(0, len(info_densities), 1)[:, np.newaxis]
tree.fit(X, info_densities)
smoothed_info_densities = tree.predict(X)
return smoothed_info_densities
def squash_segs(segments, info_densities):
start = segments[0]["start"]
end = None
seg_times = []
seg_densities = [info_densities[0]]
for i in range(1, len(segments)):
curr_density = info_densities[i]
if curr_density != info_densities[i - 1]:
seg = segments[i]
seg_start = seg["start"]
seg_times.append((start, seg_start))
seg_densities.append(curr_density)
start = seg_start
seg_times.append((start, segments[-1]["end"]))
return seg_times, seg_densities
def compute_speedups(info_densities):
avg_density = np.mean(info_densities)
speedups = avg_density / info_densities
return speedups
def compute_actual_speedup(durations, speedups, total_duration):
spedup_durations = durations / speedups
spedup_total_duration = spedup_durations.sum()
actual_speedup_factor = total_duration / spedup_total_duration
return spedup_total_duration, actual_speedup_factor
def postprocess_speedups(
speedups, factor, min_speedup, max_speedup, durations, total_duration, thresh=0.01
):
assert min_speedup <= factor and factor <= max_speedup
tuned_factor = np.array([factor / 10, factor * 10])
actual_speedup_factor = None
while (
actual_speedup_factor is None
or abs(actual_speedup_factor - factor) / factor > thresh
):
mid = tuned_factor.mean()
tuned_speedups = speedups * mid
tuned_speedups = np.round(tuned_speedups, decimals=2)
tuned_speedups = np.clip(tuned_speedups, min_speedup, max_speedup)
_, actual_speedup_factor = compute_actual_speedup(
durations, tuned_speedups, total_duration
)
tuned_factor[0 if actual_speedup_factor < factor else 1] = mid
return tuned_speedups
def cat_clips(seg_times, speedups, audio_path, output_path):
if os.path.exists(output_path):
os.remove(output_path)
in_file = ffmpeg.input(audio_path)
segs = []
for (start, end), speedup in zip(seg_times, speedups):
seg = in_file.filter("atrim", start=start, end=end).filter("atempo", speedup)
segs.append(seg)
cat = ffmpeg.concat(*segs, v=0, a=1)
cat.output(output_path).run()
def format_duration(duration):
s = duration % 60
m = duration // 60
h = m // 60
return "%02d:%02d:%02d" % (h, m, s)
def strike(url, speedup_factor, min_speedup, max_speedup, max_num_segments):
assert min_speedup >= 0.5 # ffmpeg limit
with st.spinner("downloading..."):
name = download(url, YDL_OPTS)
assert name.endswith(".m4a")
name = name.split(".m4a")[0].split("/")[-1]
audio_path = os.path.join(DATA_DIR, "%s.mp3" % name)
transcript_path = os.path.join(DATA_DIR, "%s.json" % name)
density_path = os.path.join(DATA_DIR, "%s.npy" % name)
output_path = os.path.join(DATA_DIR, "%s_smooth.mp3" % name)
with st.spinner("transcribing..."):
segments = transcribe(audio_path, transcript_path)
seg_durations = compute_seg_durations(segments)
with st.spinner("calculating information density..."):
if os.path.exists(density_path):
with open(density_path, "rb") as f:
info_densities = np.load(f)
else:
info_densities = compute_info_densities(
segments, seg_durations, llm, tokenizer, device
)
with open(density_path, "wb") as f:
np.save(f, info_densities)
total_duration = segments[-1]["end"] - segments[0]["start"]
min_sec_leaf = total_duration / max_num_segments
smoothed_info_densities = smooth_info_densities(
info_densities, seg_durations, max_num_segments, min_sec_leaf
)
squashed_times, squashed_densities = squash_segs(
segments, smoothed_info_densities
)
squashed_durations = np.array([end - start for start, end in squashed_times])
speedups = compute_speedups(squashed_densities)
speedups = postprocess_speedups(
speedups,
speedup_factor,
min_speedup,
max_speedup,
squashed_durations,
total_duration,
)
times = np.array([(seg["start"] + seg["end"]) / 2 for seg in segments])
times /= 60
annotations = [seg["text"] for seg in segments]
data = [times, info_densities / np.log(2), annotations]
cols = ["time (minutes)", "bits per second", "transcript"]
df = pd.DataFrame(list(zip(*data)), columns=cols)
min_time = segments[0]["start"] / 60
max_time = segments[-1]["end"] / 60
lines = (
alt.Chart(df, title="information rate")
.mark_line(color="gray")
.encode(
x=alt.X(cols[0], scale=alt.Scale(domain=(min_time, max_time))),
y=cols[1],
)
)
hover = alt.selection_single(
fields=cols[:1],
nearest=True,
on="mouseover",
empty="none",
)
points = lines.transform_filter(hover).mark_circle(size=65, color="orange")
tooltips = (
alt.Chart(df)
.mark_rule(color="orange")
.encode(
x=alt.X(cols[0], scale=alt.Scale(domain=(min_time, max_time))),
y=cols[1],
opacity=alt.condition(hover, alt.value(1), alt.value(0)),
tooltip=[alt.Tooltip("transcript", title="transcript")],
)
.add_selection(hover)
)
chart = (lines + points + tooltips).interactive()
st.altair_chart(chart, use_container_width=True)
st.info("hover over the plot above this message to read the transcript")
times = sum([list(x) for x in squashed_times], [])
times = np.array(times)
times /= 60
data = [times, np.repeat(speedups, 2)]
cols = ["time (minutes)", "speedup"]
df = pd.DataFrame(list(zip(*data)), columns=cols)
min_actual_speedups = min(speedups)
max_actual_speedups = max(speedups)
eps = 0.1
lines = (
alt.Chart(df, title="adaptive speedup based on information rate")
.mark_line()
.encode(
x=alt.X(cols[0], scale=alt.Scale(domain=(min_time, max_time))),
y=alt.Y(
cols[1],
scale=alt.Scale(
domain=(min_actual_speedups - eps, max_actual_speedups + eps)
),
),
)
)
st.altair_chart(lines.interactive(), use_container_width=True)
with st.spinner("stitching segments..."):
cat_clips(squashed_times, speedups, audio_path, output_path)
st.write("sped-up audio:")
st.audio(output_path)
st.markdown(
"""
## cobra
cobra stands for (co)nstant (b)it-(r)ate (a)udio.
it's a tool for speeding up audio from podcasts and lectures.
instead of applying the same speedup (like 1.5x) to the entire file,
it applies a higher speedup to parts of the file with less information content
, and a lower speedup to parts with higher information content.
it measures information content using a language model.
## usage
1. enter a youtube url
2. specify your desired overall speedup
3. specify your minimum speedup. no segment of the file will be sped up slower than this.
4. specify your maximum speedup. no segment of the file will be sped up faster than this.
5. specify how much variance you'd like to see in the speedup over time (2 = constant speedup throughout the file, 100 = frequently-changing speedup)
6. hit submit
7. wait for the charts and processed audio to appear. it can take a while to download, transcribe, calculate information density, and stitch segments.
"""
)
with st.form("my_form"):
url = st.text_input(
"youtube url", value="https://www.youtube.com/watch?v=_3MBQm7GFIM"
)
speedup_factor = st.slider(
"overall speedup for entire file", min_value=0.5, max_value=5.0, value=1.5
)
min_speedup = st.slider(
"minimum speedup per segment", min_value=0.5, max_value=5.0, value=1.0
)
max_speedup = st.slider(
"maximum speedup per segment", min_value=0.5, max_value=5.0, value=2.0
)
max_num_segments = st.slider(
"variance in speedup across segments", min_value=2, max_value=100, value=20
)
submitted = st.form_submit_button("submit")
if min_speedup <= speedup_factor and speedup_factor <= max_speedup:
if submitted:
st.write("original video:")
st.video(url)
strike(url, speedup_factor, min_speedup, max_speedup, max_num_segments)
else:
st.error("speedup must be between min and max")
st.markdown(
"""
## example
"""
)
st.image(
"example.png",
caption="the information rate is lower in the first half of the video, when they are bs'ing and using buzzwords, so the speedup is higher. the information rate is higher in the second half of the video, when they walk through a concrete example of codex solving a challenging programming problem, so the speedup is lower.",
)
st.markdown(
"""
## algorithm
1. download the audio of a youtube video (e.g., a podcast or lecture) using [youtube-dl](https://youtube-dl.org/)
2. use [whisper](https://github.com/openai/whisper) to transcribe the audio into text
3. use the [flan-t5](https://huggingface.co/docs/transformers/model_doc/flan-t5) language model to compute the negative log-likelihood of each text token given the previous tokens
4. compute the information rate of each text segment in the transcript: negative log-likelihood of all tokens in segment divided by duration of segment
5. fit a piecewise-constant function to the information rate vs. time data using a decision tree regression model from [scikit-learn](https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html). this lets us control the number of segments that will be stitched together in step 8, which can run slowly if the number of segments is too large.
6. compute speedup for each segment: 1 / information rate (induces constant bit-rate over time)
7. clip speedups with user's min and max, and use binary search to find linear scaling factor that matches the user's desired overall speedup
8. apply scaled and clipped speedups to each segment, and stitch the segments together using [ffmpeg](https://ffmpeg.org/)
"""
)
|