Spaces:
Runtime error
Runtime error
einsafutdinov
commited on
Commit
β’
86a0c05
1
Parent(s):
674f731
v0.01
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- app.py +157 -0
- demo_examples/bedroom_01.png +0 -0
- demo_examples/kitti_02.png +0 -0
- demo_examples/kitti_03.png +0 -0
- demo_examples/re10k_04.jpg +0 -0
- demo_examples/re10k_05.jpg +0 -0
- demo_examples/re10k_06.jpg +0 -0
- flash3d/networks/depth_decoder.py +81 -0
- flash3d/networks/gaussian_decoder.py +196 -0
- flash3d/networks/gaussian_predictor.py +293 -0
- flash3d/networks/layers.py +295 -0
- flash3d/networks/resnet_encoder.py +115 -0
- flash3d/networks/unidepth.py +577 -0
- flash3d/networks/unidepth_extension.py +205 -0
- flash3d/unidepth/layers/__init__.py +21 -0
- flash3d/unidepth/layers/activation.py +15 -0
- flash3d/unidepth/layers/attention.py +308 -0
- flash3d/unidepth/layers/convnext.py +44 -0
- flash3d/unidepth/layers/drop_path.py +25 -0
- flash3d/unidepth/layers/layer_scale.py +17 -0
- flash3d/unidepth/layers/mlp.py +34 -0
- flash3d/unidepth/layers/nystrom_attention.py +74 -0
- flash3d/unidepth/layers/positional_encoding.py +228 -0
- flash3d/unidepth/layers/upsample.py +69 -0
- flash3d/unidepth/models/__init__.py +5 -0
- flash3d/unidepth/models/backbones/__init__.py +9 -0
- flash3d/unidepth/models/backbones/convnext.py +590 -0
- flash3d/unidepth/models/backbones/convnext2.py +288 -0
- flash3d/unidepth/models/backbones/dinov2.py +552 -0
- flash3d/unidepth/models/backbones/metadinov2/__init__.py +12 -0
- flash3d/unidepth/models/backbones/metadinov2/attention.py +85 -0
- flash3d/unidepth/models/backbones/metadinov2/block.py +284 -0
- flash3d/unidepth/models/backbones/metadinov2/dino_head.py +68 -0
- flash3d/unidepth/models/backbones/metadinov2/drop_path.py +37 -0
- flash3d/unidepth/models/backbones/metadinov2/layer_scale.py +28 -0
- flash3d/unidepth/models/backbones/metadinov2/mlp.py +41 -0
- flash3d/unidepth/models/backbones/metadinov2/patch_embed.py +101 -0
- flash3d/unidepth/models/backbones/metadinov2/swiglu_ffn.py +63 -0
- flash3d/unidepth/models/encoder.py +184 -0
- flash3d/unidepth/models/unidepthv1/__init__.py +5 -0
- flash3d/unidepth/models/unidepthv1/decoder.py +542 -0
- flash3d/unidepth/models/unidepthv1/unidepthv1.py +329 -0
- flash3d/unidepth/ops/__init__.py +9 -0
- flash3d/unidepth/ops/losses.py +429 -0
- flash3d/unidepth/ops/scheduler.py +70 -0
- flash3d/unidepth/utils/__init__.py +35 -0
- flash3d/unidepth/utils/constants.py +21 -0
- flash3d/unidepth/utils/distributed.py +179 -0
- flash3d/unidepth/utils/ema_torch.py +342 -0
- flash3d/unidepth/utils/evaluation_depth.py +173 -0
app.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append("flash3d")
|
3 |
+
|
4 |
+
from omegaconf import OmegaConf
|
5 |
+
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
import torch
|
8 |
+
import torchvision.transforms as TT
|
9 |
+
import torchvision.transforms.functional as TTF
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
|
12 |
+
from networks.gaussian_predictor import GaussianPredictor
|
13 |
+
from util.vis3d import save_ply
|
14 |
+
|
15 |
+
|
16 |
+
def main():
|
17 |
+
if torch.cuda.is_available():
|
18 |
+
device = "cuda:0"
|
19 |
+
else:
|
20 |
+
device = "cpu"
|
21 |
+
|
22 |
+
model_cfg_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
|
23 |
+
filename="config_re10k_v1.yaml")
|
24 |
+
model_path = hf_hub_download(repo_id="einsafutdinov/flash3d",
|
25 |
+
filename="model_re10k_v1.pth")
|
26 |
+
|
27 |
+
cfg = OmegaConf.load(model_cfg_path)
|
28 |
+
model = GaussianPredictor(cfg)
|
29 |
+
device = torch.device("cuda:0")
|
30 |
+
model.to(device)
|
31 |
+
model.load_model(model_path)
|
32 |
+
|
33 |
+
pad_border_fn = TT.Pad((cfg.dataset.pad_border_aug, cfg.dataset.pad_border_aug))
|
34 |
+
to_tensor = TT.ToTensor()
|
35 |
+
|
36 |
+
def check_input_image(input_image):
|
37 |
+
if input_image is None:
|
38 |
+
raise gr.Error("No image uploaded!")
|
39 |
+
|
40 |
+
def preprocess(image):
|
41 |
+
image = TTF.resize(
|
42 |
+
image, (cfg.dataset.height, cfg.dataset.width),
|
43 |
+
interpolation=TT.InterpolationMode.BICUBIC
|
44 |
+
)
|
45 |
+
image = pad_border_fn(image)
|
46 |
+
return image
|
47 |
+
|
48 |
+
@spaces.GPU()
|
49 |
+
def reconstruct_and_export(image):
|
50 |
+
"""
|
51 |
+
Passes image through model, outputs reconstruction in form of a dict of tensors.
|
52 |
+
"""
|
53 |
+
image = to_tensor(image).to(device).unsqueeze(0)
|
54 |
+
inputs = {
|
55 |
+
("color_aug", 0, 0): image,
|
56 |
+
}
|
57 |
+
|
58 |
+
outputs = model(inputs)
|
59 |
+
|
60 |
+
# export reconstruction to ply
|
61 |
+
save_ply(outputs, ply_out_path, num_gauss=2)
|
62 |
+
|
63 |
+
return ply_out_path
|
64 |
+
|
65 |
+
ply_out_path = f'./mesh.ply'
|
66 |
+
|
67 |
+
css = """
|
68 |
+
h1 {
|
69 |
+
text-align: center;
|
70 |
+
display:block;
|
71 |
+
}
|
72 |
+
"""
|
73 |
+
|
74 |
+
with gr.Blocks(css=css) as demo:
|
75 |
+
gr.Markdown(
|
76 |
+
"""
|
77 |
+
# Flash3D
|
78 |
+
"""
|
79 |
+
)
|
80 |
+
with gr.Row(variant="panel"):
|
81 |
+
with gr.Column(scale=1):
|
82 |
+
with gr.Row():
|
83 |
+
input_image = gr.Image(
|
84 |
+
label="Input Image",
|
85 |
+
image_mode="RGBA",
|
86 |
+
sources="upload",
|
87 |
+
type="pil",
|
88 |
+
elem_id="content_image",
|
89 |
+
)
|
90 |
+
with gr.Row():
|
91 |
+
submit = gr.Button("Generate", elem_id="generate", variant="primary")
|
92 |
+
|
93 |
+
with gr.Row(variant="panel"):
|
94 |
+
gr.Examples(
|
95 |
+
examples=[
|
96 |
+
'./demo_examples/bedroom_01.png',
|
97 |
+
'./demo_examples/kitti_02.png',
|
98 |
+
'./demo_examples/kitti_03.png',
|
99 |
+
'./demo_examples/re10k_04.jpg',
|
100 |
+
'./demo_examples/re10k_05.jpg',
|
101 |
+
'./demo_examples/re10k_06.jpg',
|
102 |
+
],
|
103 |
+
inputs=[input_image],
|
104 |
+
cache_examples=False,
|
105 |
+
label="Examples",
|
106 |
+
examples_per_page=20,
|
107 |
+
)
|
108 |
+
|
109 |
+
with gr.Row():
|
110 |
+
processed_image = gr.Image(label="Processed Image", interactive=False)
|
111 |
+
|
112 |
+
with gr.Column(scale=2):
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Tab("Reconstruction"):
|
115 |
+
output_model = gr.Model3D(
|
116 |
+
height=512,
|
117 |
+
label="Output Model",
|
118 |
+
interactive=False
|
119 |
+
)
|
120 |
+
|
121 |
+
# gr.Markdown(
|
122 |
+
# """
|
123 |
+
# ## Comments:
|
124 |
+
# 1. If you run the demo online, the first example you upload should take about 4.5 seconds (with preprocessing, saving and overhead), the following take about 1.5s.
|
125 |
+
# 2. The 3D viewer shows a .ply mesh extracted from a mix of 3D Gaussians. This is only an approximations and artefacts might show.
|
126 |
+
# 3. Known limitations include:
|
127 |
+
# - a black dot appearing on the model from some viewpoints
|
128 |
+
# - see-through parts of objects, especially on the back: this is due to the model performing less well on more complicated shapes
|
129 |
+
# - back of objects are blurry: this is a model limiation due to it being deterministic
|
130 |
+
# 4. Our model is of comparable quality to state-of-the-art methods, and is **much** cheaper to train and run.
|
131 |
+
# ## How does it work?
|
132 |
+
# Splatter Image formulates 3D reconstruction as an image-to-image translation task. It maps the input image to another image,
|
133 |
+
# in which every pixel represents one 3D Gaussian and the channels of the output represent parameters of these Gaussians, including their shapes, colours and locations.
|
134 |
+
# The resulting image thus represents a set of Gaussians (almost like a point cloud) which reconstruct the shape and colour of the object.
|
135 |
+
# The method is very cheap: the reconstruction amounts to a single forward pass of a neural network with only 2D operators (2D convolutions and attention).
|
136 |
+
# The rendering is also very fast, due to using Gaussian Splatting.
|
137 |
+
# Combined, this results in very cheap training and high-quality results.
|
138 |
+
# For more results see the [project page](https://szymanowiczs.github.io/splatter-image) and the [CVPR article](https://arxiv.org/abs/2312.13150).
|
139 |
+
# """
|
140 |
+
# )
|
141 |
+
|
142 |
+
submit.click(fn=check_input_image, inputs=[input_image]).success(
|
143 |
+
fn=preprocess,
|
144 |
+
inputs=[input_image],
|
145 |
+
outputs=[processed_image],
|
146 |
+
).success(
|
147 |
+
fn=reconstruct_and_export,
|
148 |
+
inputs=[processed_image],
|
149 |
+
outputs=[output_model],
|
150 |
+
)
|
151 |
+
|
152 |
+
demo.queue(max_size=1)
|
153 |
+
demo.launch(share=True)
|
154 |
+
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
main()
|
demo_examples/bedroom_01.png
ADDED
demo_examples/kitti_02.png
ADDED
demo_examples/kitti_03.png
ADDED
demo_examples/re10k_04.jpg
ADDED
demo_examples/re10k_05.jpg
ADDED
demo_examples/re10k_06.jpg
ADDED
flash3d/networks/depth_decoder.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright Niantic 2019. Patent Pending. All rights reserved.
|
2 |
+
#
|
3 |
+
# This software is licensed under the terms of the Monodepth2 licence
|
4 |
+
# which allows for non-commercial use only, the full terms of which are made
|
5 |
+
# available in the LICENSE file.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
|
11 |
+
from collections import OrderedDict
|
12 |
+
from networks.layers import upsample, ConvBlock, Conv3x3
|
13 |
+
|
14 |
+
from einops import rearrange
|
15 |
+
|
16 |
+
|
17 |
+
class DepthDecoder(nn.Module):
|
18 |
+
def __init__(self, cfg, num_ch_enc, num_output_channels=1, use_skips=True):
|
19 |
+
super(DepthDecoder, self).__init__()
|
20 |
+
|
21 |
+
self.cfg = cfg
|
22 |
+
depth_num = cfg.model.gaussians_per_pixel - 1 if "unidepth" in cfg.model.name else cfg.model.gaussians_per_pixel
|
23 |
+
self.num_output_channels = num_output_channels * depth_num
|
24 |
+
self.use_skips = use_skips
|
25 |
+
self.upsample_mode = 'nearest'
|
26 |
+
self.scales = cfg.model.scales
|
27 |
+
|
28 |
+
self.num_ch_enc = num_ch_enc
|
29 |
+
self.num_ch_dec = np.array([16, 32, 64, 128, 256])
|
30 |
+
|
31 |
+
# decoder
|
32 |
+
self.convs = OrderedDict()
|
33 |
+
for i in range(4, -1, -1):
|
34 |
+
# upconv_0
|
35 |
+
num_ch_in = self.num_ch_enc[-1] if i == 4 else self.num_ch_dec[i + 1]
|
36 |
+
num_ch_out = self.num_ch_dec[i]
|
37 |
+
self.convs[("upconv", i, 0)] = ConvBlock(num_ch_in, num_ch_out)
|
38 |
+
|
39 |
+
# upconv_1
|
40 |
+
num_ch_in = self.num_ch_dec[i]
|
41 |
+
if self.use_skips and i > 0:
|
42 |
+
num_ch_in += self.num_ch_enc[i - 1]
|
43 |
+
num_ch_out = self.num_ch_dec[i]
|
44 |
+
self.convs[("upconv", i, 1)] = ConvBlock(num_ch_in, num_ch_out)
|
45 |
+
|
46 |
+
for s in self.scales:
|
47 |
+
out = Conv3x3(self.num_ch_dec[s], self.num_output_channels)
|
48 |
+
self.convs[("dispconv", s)] = out
|
49 |
+
nn.init.xavier_uniform_(out.conv.weight, cfg.model.depth_scale)
|
50 |
+
nn.init.constant_(out.conv.bias, cfg.model.depth_bias)
|
51 |
+
|
52 |
+
self.decoder = nn.ModuleList(list(self.convs.values()))
|
53 |
+
if cfg.model.depth_type in ["disp", "disp_inc"]:
|
54 |
+
self.activate = nn.Sigmoid()
|
55 |
+
elif cfg.model.depth_type == "depth":
|
56 |
+
self.activate = nn.Softplus()
|
57 |
+
elif cfg.model.depth_type == "depth_inc":
|
58 |
+
self.activate = torch.exp
|
59 |
+
|
60 |
+
def forward(self, input_features):
|
61 |
+
outputs = {}
|
62 |
+
x = input_features[-1]
|
63 |
+
for i in range(4, -1, -1):
|
64 |
+
x = self.convs[("upconv", i, 0)](x)
|
65 |
+
x = [upsample(x)]
|
66 |
+
if self.use_skips and i > 0:
|
67 |
+
x += [input_features[i - 1]]
|
68 |
+
x = torch.cat(x, 1)
|
69 |
+
x = self.convs[("upconv", i, 1)](x)
|
70 |
+
if i in self.scales:
|
71 |
+
depth_num = self.cfg.model.gaussians_per_pixel - 1 if "unidepth" in self.cfg.model.name else self.cfg.model.gaussians_per_pixel
|
72 |
+
if self.cfg.model.depth_type == "depth_inc":
|
73 |
+
outputs[("depth", i)] = rearrange(self.activate(torch.clamp(self.convs[("dispconv", i)](x), min=-10.0, max=6.0)),
|
74 |
+
'b (n c) ...-> (b n) c ...', n = depth_num)
|
75 |
+
elif self.cfg.model.depth_type in ["disp", "disp_inc"]:
|
76 |
+
outputs[("disp", i)] = rearrange(self.activate(self.convs[("dispconv", i)](x)),
|
77 |
+
'b (n c) ...-> (b n) c ...', n = depth_num)
|
78 |
+
else:
|
79 |
+
outputs[(self.cfg.model.depth_type, i)] = rearrange(self.activate(self.convs[("dispconv", i)](x)),
|
80 |
+
'b (n c) ...-> (b n) c ...', n = depth_num)
|
81 |
+
return outputs
|
flash3d/networks/gaussian_decoder.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
def upsample(x):
|
9 |
+
"""Upsample input tensor by a factor of 2
|
10 |
+
"""
|
11 |
+
return F.interpolate(x, scale_factor=2, mode="nearest")
|
12 |
+
|
13 |
+
|
14 |
+
class Conv3x3(nn.Module):
|
15 |
+
"""Layer to pad and convolve input
|
16 |
+
"""
|
17 |
+
def __init__(self, in_channels, out_channels, use_refl=True):
|
18 |
+
super(Conv3x3, self).__init__()
|
19 |
+
|
20 |
+
if use_refl:
|
21 |
+
self.pad = nn.ReflectionPad2d(1)
|
22 |
+
else:
|
23 |
+
self.pad = nn.ZeroPad2d(1)
|
24 |
+
self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3)
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
out = self.pad(x)
|
28 |
+
out = self.conv(out)
|
29 |
+
return out
|
30 |
+
|
31 |
+
|
32 |
+
class ConvBlock(nn.Module):
|
33 |
+
"""Layer to perform a convolution followed by ELU
|
34 |
+
"""
|
35 |
+
def __init__(self, in_channels, out_channels):
|
36 |
+
super(ConvBlock, self).__init__()
|
37 |
+
|
38 |
+
self.conv = Conv3x3(in_channels, out_channels)
|
39 |
+
self.nonlin = nn.ELU(inplace=True)
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
out = self.conv(x)
|
43 |
+
out = self.nonlin(out)
|
44 |
+
return out
|
45 |
+
|
46 |
+
|
47 |
+
def get_splits_and_inits(cfg):
|
48 |
+
split_dimensions = []
|
49 |
+
scale_inits = []
|
50 |
+
bias_inits = []
|
51 |
+
|
52 |
+
for g_idx in range(cfg.model.gaussians_per_pixel):
|
53 |
+
if cfg.model.predict_offset:
|
54 |
+
split_dimensions += [3]
|
55 |
+
scale_inits += [cfg.model.xyz_scale]
|
56 |
+
bias_inits += [cfg.model.xyz_bias]
|
57 |
+
|
58 |
+
split_dimensions += [1, 3, 4, 3]
|
59 |
+
scale_inits += [cfg.model.opacity_scale,
|
60 |
+
cfg.model.scale_scale,
|
61 |
+
1.0,
|
62 |
+
5.0]
|
63 |
+
bias_inits += [cfg.model.opacity_bias,
|
64 |
+
np.log(cfg.model.scale_bias),
|
65 |
+
0.0,
|
66 |
+
0.0]
|
67 |
+
|
68 |
+
if cfg.model.max_sh_degree != 0:
|
69 |
+
sh_num = (cfg.model.max_sh_degree + 1) ** 2 - 1
|
70 |
+
sh_num_rgb = sh_num * 3
|
71 |
+
split_dimensions.append(sh_num_rgb)
|
72 |
+
scale_inits.append(cfg.model.sh_scale)
|
73 |
+
bias_inits.append(0.0)
|
74 |
+
if not cfg.model.one_gauss_decoder:
|
75 |
+
break
|
76 |
+
|
77 |
+
return split_dimensions, scale_inits, bias_inits,
|
78 |
+
|
79 |
+
|
80 |
+
class GaussianDecoder(nn.Module):
|
81 |
+
def __init__(self, cfg, num_ch_enc, use_skips=True):
|
82 |
+
super(GaussianDecoder, self).__init__()
|
83 |
+
|
84 |
+
self.cfg = cfg
|
85 |
+
self.use_skips = use_skips
|
86 |
+
self.upsample_mode = 'nearest'
|
87 |
+
|
88 |
+
self.num_ch_enc = num_ch_enc
|
89 |
+
self.num_ch_dec = np.array(cfg.model.num_ch_dec)
|
90 |
+
|
91 |
+
split_dimensions, scale, bias = get_splits_and_inits(cfg)
|
92 |
+
|
93 |
+
# [offset], opacity, scaling, rotation, feat_dc
|
94 |
+
assert not cfg.model.unified_decoder
|
95 |
+
|
96 |
+
self.split_dimensions = split_dimensions
|
97 |
+
|
98 |
+
self.num_output_channels = sum(self.split_dimensions)
|
99 |
+
|
100 |
+
# decoder
|
101 |
+
self.convs = OrderedDict()
|
102 |
+
for i in range(4, -1, -1):
|
103 |
+
# upconv_0
|
104 |
+
num_ch_in = self.num_ch_enc[-1] if i == 4 else self.num_ch_dec[i + 1]
|
105 |
+
num_ch_out = self.num_ch_dec[i]
|
106 |
+
self.convs[("upconv", i, 0)] = ConvBlock(num_ch_in, num_ch_out)
|
107 |
+
|
108 |
+
# upconv_1
|
109 |
+
num_ch_in = self.num_ch_dec[i]
|
110 |
+
if self.use_skips and i > 0:
|
111 |
+
num_ch_in += self.num_ch_enc[i - 1]
|
112 |
+
num_ch_out = self.num_ch_dec[i]
|
113 |
+
self.convs[("upconv", i, 1)] = ConvBlock(num_ch_in, num_ch_out)
|
114 |
+
|
115 |
+
self.out = nn.Conv2d(self.num_ch_dec[0], self.num_output_channels, 1)
|
116 |
+
|
117 |
+
out_channels = self.split_dimensions
|
118 |
+
start_channels = 0
|
119 |
+
for out_channel, b, s in zip(out_channels, bias, scale):
|
120 |
+
nn.init.xavier_uniform_(
|
121 |
+
self.out.weight[start_channels:start_channels+out_channel,
|
122 |
+
:, :, :], s)
|
123 |
+
nn.init.constant_(
|
124 |
+
self.out.bias[start_channels:start_channels+out_channel], b)
|
125 |
+
start_channels += out_channel
|
126 |
+
|
127 |
+
self.decoder = nn.ModuleList(list(self.convs.values()))
|
128 |
+
|
129 |
+
self.scaling_activation = torch.exp
|
130 |
+
self.opacity_activation = torch.sigmoid
|
131 |
+
self.rotation_activation = torch.nn.functional.normalize
|
132 |
+
self.scaling_lambda = cfg.model.scale_lambda
|
133 |
+
self.sigmoid = nn.Sigmoid()
|
134 |
+
|
135 |
+
def forward(self, input_features):
|
136 |
+
self.outputs = {}
|
137 |
+
|
138 |
+
# decoder
|
139 |
+
x = input_features[-1]
|
140 |
+
for i in range(4, -1, -1):
|
141 |
+
x = self.convs[("upconv", i, 0)](x)
|
142 |
+
x = [upsample(x)]
|
143 |
+
if self.use_skips and i > 0:
|
144 |
+
x += [input_features[i - 1]]
|
145 |
+
x = torch.cat(x, 1)
|
146 |
+
x = self.convs[("upconv", i, 1)](x)
|
147 |
+
|
148 |
+
x = self.out(x)
|
149 |
+
|
150 |
+
split_network_outputs = x.split(self.split_dimensions, dim=1)
|
151 |
+
|
152 |
+
offset_list = []
|
153 |
+
opacity_list = []
|
154 |
+
scaling_list = []
|
155 |
+
rotation_list = []
|
156 |
+
feat_dc_list = []
|
157 |
+
feat_rest_list = []
|
158 |
+
|
159 |
+
assert not self.cfg.model.unified_decoder
|
160 |
+
|
161 |
+
for i in range(self.cfg.model.gaussians_per_pixel):
|
162 |
+
assert self.cfg.model.max_sh_degree > 0
|
163 |
+
if self.cfg.model.predict_offset:
|
164 |
+
offset_s, opacity_s, scaling_s, \
|
165 |
+
rotation_s, feat_dc_s, features_rest_s = split_network_outputs[i*6:(i+1)*6]
|
166 |
+
offset_list.append(offset_s[:, None, ...])
|
167 |
+
else:
|
168 |
+
opacity_s, scaling_s, rotation_s, feat_dc_s, features_rest_s = split_network_outputs[i*5:(i+1)*5]
|
169 |
+
opacity_list.append(opacity_s[:, None, ...])
|
170 |
+
scaling_list.append(scaling_s[:, None, ...])
|
171 |
+
rotation_list.append(rotation_s[:, None, ...])
|
172 |
+
feat_dc_list.append(feat_dc_s[:, None, ...])
|
173 |
+
feat_rest_list.append(features_rest_s[:, None, ...])
|
174 |
+
if not self.cfg.model.one_gauss_decoder:
|
175 |
+
break
|
176 |
+
|
177 |
+
# squeezing will remove dimension if there is only one gaussian per pixel
|
178 |
+
opacity = torch.cat(opacity_list, dim=1).squeeze(1)
|
179 |
+
scaling = torch.cat(scaling_list, dim=1).squeeze(1)
|
180 |
+
rotation = torch.cat(rotation_list, dim=1).squeeze(1)
|
181 |
+
feat_dc = torch.cat(feat_dc_list, dim=1).squeeze(1)
|
182 |
+
features_rest = torch.cat(feat_rest_list, dim=1).squeeze(1)
|
183 |
+
|
184 |
+
out = {
|
185 |
+
("gauss_opacity", 0): self.opacity_activation(opacity),
|
186 |
+
("gauss_scaling", 0): self.scaling_activation(scaling) * self.scaling_lambda,
|
187 |
+
("gauss_rotation", 0): self.rotation_activation(rotation),
|
188 |
+
("gauss_features_dc", 0): feat_dc,
|
189 |
+
("gauss_features_rest", 0): features_rest
|
190 |
+
}
|
191 |
+
|
192 |
+
if self.cfg.model.predict_offset:
|
193 |
+
offset = torch.cat(offset_list, dim=1).squeeze(1)
|
194 |
+
out[("gauss_offset", 0)] = offset
|
195 |
+
return out
|
196 |
+
|
flash3d/networks/gaussian_predictor.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import logging
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
from networks.layers import BackprojectDepth, disp_to_depth
|
9 |
+
from networks.resnet_encoder import ResnetEncoder
|
10 |
+
from networks.depth_decoder import DepthDecoder
|
11 |
+
from networks.gaussian_decoder import GaussianDecoder
|
12 |
+
|
13 |
+
|
14 |
+
def default_param_group(model):
|
15 |
+
return [{'params': model.parameters()}]
|
16 |
+
|
17 |
+
|
18 |
+
def to_device(inputs, device):
|
19 |
+
for key, ipt in inputs.items():
|
20 |
+
if isinstance(ipt, torch.Tensor):
|
21 |
+
inputs[key] = ipt.to(device)
|
22 |
+
return inputs
|
23 |
+
|
24 |
+
|
25 |
+
class GaussianPredictor(nn.Module):
|
26 |
+
def __init__(self, cfg):
|
27 |
+
super().__init__()
|
28 |
+
self.cfg = cfg
|
29 |
+
|
30 |
+
# checking height and width are multiples of 32
|
31 |
+
# assert cfg.dataset.width % 32 == 0, "'width' must be a multiple of 32"
|
32 |
+
|
33 |
+
models = {}
|
34 |
+
self.parameters_to_train = []
|
35 |
+
|
36 |
+
self.num_scales = len(cfg.model.scales)
|
37 |
+
|
38 |
+
assert cfg.model.frame_ids[0] == 0, "frame_ids must start with 0"
|
39 |
+
|
40 |
+
if cfg.model.use_stereo:
|
41 |
+
cfg.model.frame_ids.append("s")
|
42 |
+
|
43 |
+
model_name = cfg.model.name
|
44 |
+
if model_name == "resnet":
|
45 |
+
models["encoder"] = ResnetEncoder(
|
46 |
+
cfg.model.num_layers,
|
47 |
+
cfg.model.weights_init == "pretrained",
|
48 |
+
cfg.model.resnet_bn_order
|
49 |
+
)
|
50 |
+
self.parameters_to_train += default_param_group(models["encoder"])
|
51 |
+
if not cfg.model.unified_decoder:
|
52 |
+
models["depth"] = DepthDecoder(
|
53 |
+
cfg, models["encoder"].num_ch_enc)
|
54 |
+
self.parameters_to_train += default_param_group(models["depth"])
|
55 |
+
if cfg.model.gaussian_rendering:
|
56 |
+
for i in range(cfg.model.gaussians_per_pixel):
|
57 |
+
gauss_decoder = GaussianDecoder(
|
58 |
+
cfg, models["encoder"].num_ch_enc,
|
59 |
+
)
|
60 |
+
self.parameters_to_train += default_param_group(gauss_decoder)
|
61 |
+
models["gauss_decoder_"+str(i)] = gauss_decoder
|
62 |
+
elif model_name == "unidepth":
|
63 |
+
from networks.unidepth import UniDepthSplatter
|
64 |
+
models["unidepth"] = UniDepthSplatter(cfg)
|
65 |
+
self.parameters_to_train += models["unidepth"].get_parameter_groups()
|
66 |
+
elif model_name in ["unidepth_unprojector_vit", "unidepth_unprojector_cnvnxtl"]:
|
67 |
+
from networks.unidepth import UniDepthUnprojector
|
68 |
+
models["unidepth"] = UniDepthUnprojector(cfg)
|
69 |
+
self.parameters_to_train += models["unidepth"].get_parameter_groups()
|
70 |
+
elif model_name in ["unidepth_extension_vit", "unidepth_extension_cnvnxtl"]:
|
71 |
+
from networks.unidepth_extension import UniDepthExtended
|
72 |
+
models["unidepth_extended"] = UniDepthExtended(cfg)
|
73 |
+
self.parameters_to_train += models["unidepth_extended"].get_parameter_groups()
|
74 |
+
|
75 |
+
self.models = nn.ModuleDict(models)
|
76 |
+
|
77 |
+
backproject_depth = {}
|
78 |
+
H = cfg.dataset.height
|
79 |
+
W = cfg.dataset.width
|
80 |
+
for scale in cfg.model.scales:
|
81 |
+
h = H // (2 ** scale)
|
82 |
+
w = W // (2 ** scale)
|
83 |
+
if cfg.model.shift_rays_half_pixel == "zero":
|
84 |
+
shift_rays_half_pixel = 0
|
85 |
+
elif cfg.model.shift_rays_half_pixel == "forward":
|
86 |
+
shift_rays_half_pixel = 0.5
|
87 |
+
elif cfg.model.shift_rays_half_pixel == "backward":
|
88 |
+
shift_rays_half_pixel = -0.5
|
89 |
+
else:
|
90 |
+
raise NotImplementedError
|
91 |
+
backproject_depth[str(scale)] = BackprojectDepth(
|
92 |
+
cfg.optimiser.batch_size * cfg.model.gaussians_per_pixel,
|
93 |
+
# backprojection can be different if padding was used
|
94 |
+
h + 2 * self.cfg.dataset.pad_border_aug,
|
95 |
+
w + 2 * self.cfg.dataset.pad_border_aug,
|
96 |
+
shift_rays_half_pixel=shift_rays_half_pixel
|
97 |
+
)
|
98 |
+
self.backproject_depth = nn.ModuleDict(backproject_depth)
|
99 |
+
|
100 |
+
def set_train(self):
|
101 |
+
"""Convert all models to training mode
|
102 |
+
"""
|
103 |
+
for m in self.models.values():
|
104 |
+
m.train()
|
105 |
+
self._is_train = True
|
106 |
+
|
107 |
+
def set_eval(self):
|
108 |
+
"""Convert all models to testing/evaluation mode
|
109 |
+
"""
|
110 |
+
for m in self.models.values():
|
111 |
+
m.eval()
|
112 |
+
self._is_train = False
|
113 |
+
|
114 |
+
def is_train(self):
|
115 |
+
return self._is_train
|
116 |
+
|
117 |
+
def forward(self, inputs):
|
118 |
+
cfg = self.cfg
|
119 |
+
B = cfg.optimiser.batch_size
|
120 |
+
|
121 |
+
if cfg.model.name == "resnet":
|
122 |
+
do_flip = self.is_train() and \
|
123 |
+
cfg.train.lazy_flip_augmentation and \
|
124 |
+
(torch.rand(1) > .5).item()
|
125 |
+
# Otherwise, we only feed the image with frame_id 0 through the depth encoder
|
126 |
+
input_img = inputs["color_aug", 0, 0]
|
127 |
+
if do_flip:
|
128 |
+
input_img = torch.flip(input_img, dims=(-1, ))
|
129 |
+
features = self.models["encoder"](input_img)
|
130 |
+
if not cfg.model.unified_decoder:
|
131 |
+
outputs = self.models["depth"](features)
|
132 |
+
else:
|
133 |
+
outputs = dict()
|
134 |
+
|
135 |
+
if self.cfg.model.gaussian_rendering:
|
136 |
+
# gauss_feats = self.models["gauss_encoder"](inputs["color_aug", 0, 0])
|
137 |
+
input_f_id = 0
|
138 |
+
gauss_feats = features
|
139 |
+
gauss_outs = dict()
|
140 |
+
for i in range(self.cfg.model.gaussians_per_pixel):
|
141 |
+
outs = self.models["gauss_decoder_"+str(i)](gauss_feats)
|
142 |
+
for key, v in outs.items():
|
143 |
+
gauss_outs[key] = outs[key][:,None,...] if i==0 else torch.cat([gauss_outs[key], outs[key][:,None,...]], dim=1)
|
144 |
+
for key, v in gauss_outs.items():
|
145 |
+
gauss_outs[key] = rearrange(gauss_outs[key], 'b n ... -> (b n) ...')
|
146 |
+
outputs |= gauss_outs
|
147 |
+
outputs = {(key[0], input_f_id, key[1]): v for key, v in outputs.items()}
|
148 |
+
else:
|
149 |
+
for scale in cfg.model.scales:
|
150 |
+
outputs[("disp", 0, scale)] = outputs[("disp", scale)]
|
151 |
+
|
152 |
+
# unflip all outputs
|
153 |
+
if do_flip:
|
154 |
+
for k, v in outputs.items():
|
155 |
+
outputs[k] = torch.flip(v, dims=(-1, ))
|
156 |
+
elif "unidepth" in cfg.model.name:
|
157 |
+
if cfg.model.name in ["unidepth",
|
158 |
+
"unidepth_unprojector_vit",
|
159 |
+
"unidepth_unprojector_cnvnxtl"]:
|
160 |
+
outputs = self.models["unidepth"](inputs)
|
161 |
+
elif cfg.model.name in ["unidepth_extension_vit",
|
162 |
+
"unidepth_extension_cnvnxtl"]:
|
163 |
+
outputs = self.models["unidepth_extended"](inputs)
|
164 |
+
|
165 |
+
input_f_id = 0
|
166 |
+
outputs = {(key[0], input_f_id, key[1]): v for key, v in outputs.items()}
|
167 |
+
|
168 |
+
input_f_id = 0
|
169 |
+
scale = 0
|
170 |
+
if not ("depth", input_f_id, scale) in outputs:
|
171 |
+
disp = outputs[("disp", input_f_id, scale)]
|
172 |
+
_, depth = disp_to_depth(disp, cfg.model.min_depth, cfg.model.max_depth)
|
173 |
+
outputs[("depth", input_f_id, scale)] = depth
|
174 |
+
|
175 |
+
self.compute_gauss_means(inputs, outputs)
|
176 |
+
|
177 |
+
return outputs
|
178 |
+
|
179 |
+
def target_tensor_image_dims(self, inputs):
|
180 |
+
B, _, H, W = inputs["color", 0, 0].shape
|
181 |
+
return B, H, W
|
182 |
+
|
183 |
+
def compute_gauss_means(self, inputs, outputs):
|
184 |
+
cfg = self.cfg
|
185 |
+
input_f_id = 0
|
186 |
+
scale = 0
|
187 |
+
depth = outputs[("depth", input_f_id, scale)]
|
188 |
+
B, _, H, W = depth.shape
|
189 |
+
if ("inv_K_src", scale) in inputs:
|
190 |
+
inv_K = inputs[("inv_K_src", scale)]
|
191 |
+
else:
|
192 |
+
inv_K = outputs[("inv_K_src", input_f_id, scale)]
|
193 |
+
if self.cfg.model.gaussians_per_pixel > 1:
|
194 |
+
inv_K = rearrange(inv_K[:,None,...].
|
195 |
+
repeat(1, self.cfg.model.gaussians_per_pixel, 1, 1),
|
196 |
+
'b n ... -> (b n) ...')
|
197 |
+
xyz = self.backproject_depth[str(scale)](
|
198 |
+
depth, inv_K
|
199 |
+
)
|
200 |
+
inputs[("inv_K_src", scale)] = inv_K
|
201 |
+
if cfg.model.predict_offset:
|
202 |
+
offset = outputs[("gauss_offset", input_f_id, scale)]
|
203 |
+
if cfg.model.scaled_offset:
|
204 |
+
offset = offset * depth.detach()
|
205 |
+
offset = offset.view(B, 3, -1)
|
206 |
+
zeros = torch.zeros(B, 1, H * W, device=depth.device)
|
207 |
+
offset = torch.cat([offset, zeros], 1)
|
208 |
+
xyz = xyz + offset # [B, 4, W*H]
|
209 |
+
outputs[("gauss_means", input_f_id, scale)] = xyz
|
210 |
+
|
211 |
+
def checkpoint_dir(self):
|
212 |
+
return Path("checkpoints")
|
213 |
+
|
214 |
+
def save_model(self, optimizer, step, ema=None):
|
215 |
+
"""Save model weights to disk
|
216 |
+
"""
|
217 |
+
save_folder = self.checkpoint_dir()
|
218 |
+
save_folder.mkdir(exist_ok=True, parents=True)
|
219 |
+
|
220 |
+
save_path = save_folder / f"model_{step:07}.pth"
|
221 |
+
logging.info(f"saving checkpoint to {str(save_path)}")
|
222 |
+
|
223 |
+
model = ema.ema_model if ema is not None else self
|
224 |
+
save_dict = {
|
225 |
+
"model": model.state_dict(),
|
226 |
+
"version": "1.0",
|
227 |
+
"optimiser": optimizer.state_dict(),
|
228 |
+
"step": step
|
229 |
+
}
|
230 |
+
torch.save(save_dict, save_path)
|
231 |
+
|
232 |
+
num_ckpts = self.cfg.optimiser.num_keep_ckpts
|
233 |
+
ckpts = sorted(list(save_folder.glob("model_*.pth")), reverse=True)
|
234 |
+
if len(ckpts) > num_ckpts:
|
235 |
+
for ckpt in ckpts[num_ckpts:]:
|
236 |
+
ckpt.unlink()
|
237 |
+
|
238 |
+
def load_model(self, weights_path, optimizer=None):
|
239 |
+
"""Load model(s) from disk
|
240 |
+
"""
|
241 |
+
weights_path = Path(weights_path)
|
242 |
+
|
243 |
+
# determine if it is an old or new saving format
|
244 |
+
if weights_path.is_dir() and weights_path.joinpath("encoder.pth").exists():
|
245 |
+
self.load_model_old(weights_path, optimizer)
|
246 |
+
return
|
247 |
+
|
248 |
+
logging.info(f"Loading weights from {weights_path}...")
|
249 |
+
state_dict = torch.load(weights_path)
|
250 |
+
if "version" in state_dict and state_dict["version"] == "1.0":
|
251 |
+
new_dict = {}
|
252 |
+
for k, v in state_dict["model"].items():
|
253 |
+
if "backproject_depth" in k:
|
254 |
+
new_dict[k] = self.state_dict()[k].clone()
|
255 |
+
else:
|
256 |
+
new_dict[k] = v.clone()
|
257 |
+
# for k, v in state_dict["model"].items():
|
258 |
+
# if "backproject_depth" in k and ("pix_coords" in k or "ones" in k):
|
259 |
+
# # model has these parameters set as a function of batch size
|
260 |
+
# # when batch size changes in eval this results in a loading error
|
261 |
+
# state_dict["model"][k] = v[:1, ...]
|
262 |
+
self.load_state_dict(new_dict, strict=False)
|
263 |
+
else:
|
264 |
+
# TODO remove loading according to the old format
|
265 |
+
for name in self.cfg.train.models_to_load:
|
266 |
+
if name not in self.models:
|
267 |
+
continue
|
268 |
+
self.models[name].load_state_dict(state_dict[name])
|
269 |
+
|
270 |
+
# loading adam state
|
271 |
+
if optimizer is not None:
|
272 |
+
optimizer.load_state_dict(state_dict["optimiser"])
|
273 |
+
self.step = state_dict["step"]
|
274 |
+
|
275 |
+
def load_model_old(self, weights_folder, optimizer=None):
|
276 |
+
for n in self.cfg.train.models_to_load:
|
277 |
+
print(f"Loading {n} weights...")
|
278 |
+
path = weights_folder / f"{n}.pth"
|
279 |
+
if n not in self.models:
|
280 |
+
continue
|
281 |
+
model_dict = self.models[n].state_dict()
|
282 |
+
pretrained_dict = torch.load(path)
|
283 |
+
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
|
284 |
+
model_dict.update(pretrained_dict)
|
285 |
+
self.models[n].load_state_dict(model_dict)
|
286 |
+
|
287 |
+
# loading adam state
|
288 |
+
optimizer_load_path = weights_folder / "adam.pth"
|
289 |
+
if optimizer is not None and optimizer_load_path.is_file():
|
290 |
+
print("Loading Adam weights")
|
291 |
+
optimizer_state = torch.load(optimizer_load_path)
|
292 |
+
optimizer.load_state_dict(optimizer_state["adam"])
|
293 |
+
self.step = optimizer_state["step"]
|
flash3d/networks/layers.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright Niantic 2019. Patent Pending. All rights reserved.
|
2 |
+
#
|
3 |
+
# This software is licensed under the terms of the Monodepth2 licence
|
4 |
+
# which allows for non-commercial use only, the full terms of which are made
|
5 |
+
# available in the LICENSE file.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
|
14 |
+
def disp_to_depth(disp, min_depth, max_depth):
|
15 |
+
"""Convert network's sigmoid output into depth prediction
|
16 |
+
The formula for this conversion is given in the 'additional considerations'
|
17 |
+
section of the paper.
|
18 |
+
"""
|
19 |
+
min_disp = 1 / max_depth
|
20 |
+
max_disp = 1 / min_depth
|
21 |
+
scaled_disp = min_disp + (max_disp - min_disp) * disp
|
22 |
+
depth = 1 / scaled_disp
|
23 |
+
return scaled_disp, depth
|
24 |
+
|
25 |
+
|
26 |
+
def transformation_from_parameters(axisangle, translation, invert=False):
|
27 |
+
"""Convert the network's (axisangle, translation) output into a 4x4 matrix
|
28 |
+
"""
|
29 |
+
R = rot_from_axisangle(axisangle)
|
30 |
+
t = translation.clone()
|
31 |
+
|
32 |
+
if invert:
|
33 |
+
R = R.transpose(1, 2)
|
34 |
+
t *= -1
|
35 |
+
|
36 |
+
T = get_translation_matrix(t)
|
37 |
+
|
38 |
+
if invert:
|
39 |
+
M = torch.matmul(R, T)
|
40 |
+
else:
|
41 |
+
M = torch.matmul(T, R)
|
42 |
+
|
43 |
+
return M
|
44 |
+
|
45 |
+
|
46 |
+
def get_translation_matrix(translation_vector):
|
47 |
+
"""Convert a translation vector into a 4x4 transformation matrix
|
48 |
+
"""
|
49 |
+
T = torch.zeros(translation_vector.shape[0], 4, 4).to(device=translation_vector.device)
|
50 |
+
|
51 |
+
t = translation_vector.contiguous().view(-1, 3, 1)
|
52 |
+
|
53 |
+
T[:, 0, 0] = 1
|
54 |
+
T[:, 1, 1] = 1
|
55 |
+
T[:, 2, 2] = 1
|
56 |
+
T[:, 3, 3] = 1
|
57 |
+
T[:, :3, 3, None] = t
|
58 |
+
|
59 |
+
return T
|
60 |
+
|
61 |
+
|
62 |
+
def rot_from_axisangle(vec):
|
63 |
+
"""Convert an axisangle rotation into a 4x4 transformation matrix
|
64 |
+
(adapted from https://github.com/Wallacoloo/printipi)
|
65 |
+
Input 'vec' has to be Bx1x3
|
66 |
+
"""
|
67 |
+
angle = torch.norm(vec, 2, 2, True)
|
68 |
+
axis = vec / (angle + 1e-7)
|
69 |
+
|
70 |
+
ca = torch.cos(angle)
|
71 |
+
sa = torch.sin(angle)
|
72 |
+
C = 1 - ca
|
73 |
+
|
74 |
+
x = axis[..., 0].unsqueeze(1)
|
75 |
+
y = axis[..., 1].unsqueeze(1)
|
76 |
+
z = axis[..., 2].unsqueeze(1)
|
77 |
+
|
78 |
+
xs = x * sa
|
79 |
+
ys = y * sa
|
80 |
+
zs = z * sa
|
81 |
+
xC = x * C
|
82 |
+
yC = y * C
|
83 |
+
zC = z * C
|
84 |
+
xyC = x * yC
|
85 |
+
yzC = y * zC
|
86 |
+
zxC = z * xC
|
87 |
+
|
88 |
+
rot = torch.zeros((vec.shape[0], 4, 4)).to(device=vec.device)
|
89 |
+
|
90 |
+
rot[:, 0, 0] = torch.squeeze(x * xC + ca)
|
91 |
+
rot[:, 0, 1] = torch.squeeze(xyC - zs)
|
92 |
+
rot[:, 0, 2] = torch.squeeze(zxC + ys)
|
93 |
+
rot[:, 1, 0] = torch.squeeze(xyC + zs)
|
94 |
+
rot[:, 1, 1] = torch.squeeze(y * yC + ca)
|
95 |
+
rot[:, 1, 2] = torch.squeeze(yzC - xs)
|
96 |
+
rot[:, 2, 0] = torch.squeeze(zxC - ys)
|
97 |
+
rot[:, 2, 1] = torch.squeeze(yzC + xs)
|
98 |
+
rot[:, 2, 2] = torch.squeeze(z * zC + ca)
|
99 |
+
rot[:, 3, 3] = 1
|
100 |
+
|
101 |
+
return rot
|
102 |
+
|
103 |
+
|
104 |
+
class ConvBlock(nn.Module):
|
105 |
+
"""Layer to perform a convolution followed by ELU
|
106 |
+
"""
|
107 |
+
def __init__(self, in_channels, out_channels):
|
108 |
+
super(ConvBlock, self).__init__()
|
109 |
+
|
110 |
+
self.conv = Conv3x3(in_channels, out_channels)
|
111 |
+
self.nonlin = nn.ELU(inplace=True)
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
out = self.conv(x)
|
115 |
+
out = self.nonlin(out)
|
116 |
+
return out
|
117 |
+
|
118 |
+
|
119 |
+
class Conv3x3(nn.Module):
|
120 |
+
"""Layer to pad and convolve input
|
121 |
+
"""
|
122 |
+
def __init__(self, in_channels, out_channels, use_refl=True):
|
123 |
+
super(Conv3x3, self).__init__()
|
124 |
+
|
125 |
+
if use_refl:
|
126 |
+
self.pad = nn.ReflectionPad2d(1)
|
127 |
+
else:
|
128 |
+
self.pad = nn.ZeroPad2d(1)
|
129 |
+
self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3)
|
130 |
+
|
131 |
+
def forward(self, x):
|
132 |
+
out = self.pad(x)
|
133 |
+
out = self.conv(out)
|
134 |
+
return out
|
135 |
+
|
136 |
+
|
137 |
+
class BackprojectDepth(nn.Module):
|
138 |
+
"""Layer to transform a depth image into a point cloud
|
139 |
+
"""
|
140 |
+
def __init__(self, batch_size, height, width, shift_rays_half_pixel=0):
|
141 |
+
super(BackprojectDepth, self).__init__()
|
142 |
+
|
143 |
+
self.batch_size = batch_size
|
144 |
+
self.height = height
|
145 |
+
self.width = width
|
146 |
+
|
147 |
+
meshgrid = np.meshgrid(range(self.width), range(self.height), indexing='xy')
|
148 |
+
id_coords = np.stack(meshgrid, axis=0).astype(np.float32)
|
149 |
+
id_coords = torch.from_numpy(id_coords)
|
150 |
+
|
151 |
+
ones = torch.ones(self.batch_size, 1, self.height * self.width)
|
152 |
+
|
153 |
+
pix_coords = torch.unsqueeze(torch.stack(
|
154 |
+
[id_coords[0].view(-1), id_coords[1].view(-1)], 0), 0)
|
155 |
+
pix_coords = pix_coords.repeat(batch_size, 1, 1)
|
156 |
+
pix_coords = torch.cat([pix_coords + shift_rays_half_pixel,
|
157 |
+
ones], 1)
|
158 |
+
self.register_buffer("pix_coords", pix_coords)
|
159 |
+
self.register_buffer("id_coords", id_coords)
|
160 |
+
self.register_buffer("ones", ones)
|
161 |
+
# self.pix_coords = pix_coords
|
162 |
+
# self.ones = ones
|
163 |
+
|
164 |
+
def forward(self, depth, inv_K):
|
165 |
+
cam_points = torch.matmul(inv_K[:, :3, :3], self.pix_coords.to(depth.device))
|
166 |
+
cam_points = depth.view(self.batch_size, 1, -1) * cam_points
|
167 |
+
cam_points = torch.cat([cam_points, self.ones.to(depth.device)], 1)
|
168 |
+
|
169 |
+
return cam_points
|
170 |
+
|
171 |
+
|
172 |
+
class Project3D(nn.Module):
|
173 |
+
"""Layer which projects 3D points into a camera with intrinsics K and at position T
|
174 |
+
"""
|
175 |
+
def __init__(self, batch_size, height, width, eps=1e-7):
|
176 |
+
super(Project3D, self).__init__()
|
177 |
+
|
178 |
+
self.batch_size = batch_size
|
179 |
+
self.height = height
|
180 |
+
self.width = width
|
181 |
+
self.eps = eps
|
182 |
+
|
183 |
+
def forward(self, points, K, T=None):
|
184 |
+
if T is None:
|
185 |
+
P = K
|
186 |
+
else:
|
187 |
+
P = torch.matmul(K, T)
|
188 |
+
P = P[:, :3, :]
|
189 |
+
|
190 |
+
cam_points = torch.matmul(P, points)
|
191 |
+
|
192 |
+
pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze(1) + self.eps)
|
193 |
+
pix_coords = pix_coords.view(self.batch_size, 2, self.height, self.width)
|
194 |
+
pix_coords = pix_coords.permute(0, 2, 3, 1)
|
195 |
+
pix_coords[..., 0] /= self.width - 1
|
196 |
+
pix_coords[..., 1] /= self.height - 1
|
197 |
+
pix_coords = (pix_coords - 0.5) * 2
|
198 |
+
return pix_coords
|
199 |
+
|
200 |
+
|
201 |
+
class Project3DSimple(nn.Module):
|
202 |
+
"""Layer which projects 3D points into a camera with intrinsics K and at position T
|
203 |
+
"""
|
204 |
+
def __init__(self, batch_size, height, width, eps=1e-7):
|
205 |
+
super(Project3DSimple, self).__init__()
|
206 |
+
|
207 |
+
self.batch_size = batch_size
|
208 |
+
self.height = height
|
209 |
+
self.width = width
|
210 |
+
self.eps = eps
|
211 |
+
|
212 |
+
def forward(self, points, K):
|
213 |
+
K = K[:, :3, :]
|
214 |
+
|
215 |
+
cam_points = torch.matmul(K, points)
|
216 |
+
|
217 |
+
pix_coords = cam_points[:, :2, :] / (cam_points[:, 2, :].unsqueeze(1) + self.eps)
|
218 |
+
pix_coords = pix_coords.view(self.batch_size, 2, self.height, self.width)
|
219 |
+
pix_coords = pix_coords.permute(0, 2, 3, 1)
|
220 |
+
return pix_coords
|
221 |
+
|
222 |
+
def upsample(x):
|
223 |
+
"""Upsample input tensor by a factor of 2
|
224 |
+
"""
|
225 |
+
return F.interpolate(x, scale_factor=2, mode="nearest")
|
226 |
+
|
227 |
+
|
228 |
+
def get_smooth_loss(disp, img):
|
229 |
+
"""Computes the smoothness loss for a disparity image
|
230 |
+
The color image is used for edge-aware smoothness
|
231 |
+
"""
|
232 |
+
grad_disp_x = torch.abs(disp[:, :, :, :-1] - disp[:, :, :, 1:])
|
233 |
+
grad_disp_y = torch.abs(disp[:, :, :-1, :] - disp[:, :, 1:, :])
|
234 |
+
|
235 |
+
grad_img_x = torch.mean(torch.abs(img[:, :, :, :-1] - img[:, :, :, 1:]), 1, keepdim=True)
|
236 |
+
grad_img_y = torch.mean(torch.abs(img[:, :, :-1, :] - img[:, :, 1:, :]), 1, keepdim=True)
|
237 |
+
|
238 |
+
grad_disp_x *= torch.exp(-grad_img_x)
|
239 |
+
grad_disp_y *= torch.exp(-grad_img_y)
|
240 |
+
|
241 |
+
return grad_disp_x.mean() + grad_disp_y.mean()
|
242 |
+
|
243 |
+
|
244 |
+
class SSIM(nn.Module):
|
245 |
+
"""Layer to compute the SSIM loss between a pair of images
|
246 |
+
"""
|
247 |
+
def __init__(self):
|
248 |
+
super(SSIM, self).__init__()
|
249 |
+
self.mu_x_pool = nn.AvgPool2d(3, 1)
|
250 |
+
self.mu_y_pool = nn.AvgPool2d(3, 1)
|
251 |
+
self.sig_x_pool = nn.AvgPool2d(3, 1)
|
252 |
+
self.sig_y_pool = nn.AvgPool2d(3, 1)
|
253 |
+
self.sig_xy_pool = nn.AvgPool2d(3, 1)
|
254 |
+
|
255 |
+
self.refl = nn.ReflectionPad2d(1)
|
256 |
+
|
257 |
+
self.C1 = 0.01 ** 2
|
258 |
+
self.C2 = 0.03 ** 2
|
259 |
+
|
260 |
+
def forward(self, x, y):
|
261 |
+
x = self.refl(x)
|
262 |
+
y = self.refl(y)
|
263 |
+
|
264 |
+
mu_x = self.mu_x_pool(x)
|
265 |
+
mu_y = self.mu_y_pool(y)
|
266 |
+
|
267 |
+
sigma_x = self.sig_x_pool(x ** 2) - mu_x ** 2
|
268 |
+
sigma_y = self.sig_y_pool(y ** 2) - mu_y ** 2
|
269 |
+
sigma_xy = self.sig_xy_pool(x * y) - mu_x * mu_y
|
270 |
+
|
271 |
+
SSIM_n = (2 * mu_x * mu_y + self.C1) * (2 * sigma_xy + self.C2)
|
272 |
+
SSIM_d = (mu_x ** 2 + mu_y ** 2 + self.C1) * (sigma_x + sigma_y + self.C2)
|
273 |
+
|
274 |
+
return torch.clamp((1 - SSIM_n / SSIM_d) / 2, 0, 1)
|
275 |
+
|
276 |
+
|
277 |
+
def compute_depth_errors(gt, pred):
|
278 |
+
"""Computation of error metrics between predicted and ground truth depths
|
279 |
+
"""
|
280 |
+
thresh = torch.max((gt / pred), (pred / gt))
|
281 |
+
a1 = (thresh < 1.25 ).float().mean()
|
282 |
+
a2 = (thresh < 1.25 ** 2).float().mean()
|
283 |
+
a3 = (thresh < 1.25 ** 3).float().mean()
|
284 |
+
|
285 |
+
rmse = (gt - pred) ** 2
|
286 |
+
rmse = torch.sqrt(rmse.mean())
|
287 |
+
|
288 |
+
rmse_log = (torch.log(gt) - torch.log(pred)) ** 2
|
289 |
+
rmse_log = torch.sqrt(rmse_log.mean())
|
290 |
+
|
291 |
+
abs_rel = torch.mean(torch.abs(gt - pred) / gt)
|
292 |
+
|
293 |
+
sq_rel = torch.mean((gt - pred) ** 2 / gt)
|
294 |
+
|
295 |
+
return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3
|
flash3d/networks/resnet_encoder.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright Niantic 2019. Patent Pending. All rights reserved.
|
2 |
+
#
|
3 |
+
# This software is licensed under the terms of the Monodepth2 licence
|
4 |
+
# which allows for non-commercial use only, the full terms of which are made
|
5 |
+
# available in the LICENSE file.
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torchvision.models as models
|
12 |
+
|
13 |
+
|
14 |
+
RESNETS = {18: (models.resnet18, models.ResNet18_Weights.IMAGENET1K_V1),
|
15 |
+
50: (models.resnet50, models.ResNet50_Weights.IMAGENET1K_V2)}
|
16 |
+
|
17 |
+
|
18 |
+
class ResNetMultiImageInput(models.ResNet):
|
19 |
+
"""Constructs a resnet model with varying number of input images.
|
20 |
+
Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
|
21 |
+
"""
|
22 |
+
def __init__(self, block, layers, num_classes=1000, num_input_images=1):
|
23 |
+
super(ResNetMultiImageInput, self).__init__(block, layers)
|
24 |
+
self.inplanes = 64
|
25 |
+
self.conv1 = nn.Conv2d(
|
26 |
+
num_input_images * 3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
27 |
+
self.bn1 = nn.BatchNorm2d(64)
|
28 |
+
self.relu = nn.ReLU(inplace=True)
|
29 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
30 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
31 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
32 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
33 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
34 |
+
|
35 |
+
for m in self.modules():
|
36 |
+
if isinstance(m, nn.Conv2d):
|
37 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
38 |
+
elif isinstance(m, nn.BatchNorm2d):
|
39 |
+
nn.init.constant_(m.weight, 1)
|
40 |
+
nn.init.constant_(m.bias, 0)
|
41 |
+
|
42 |
+
|
43 |
+
def resnet_multiimage_input(num_layers, pretrained=False, num_input_images=1):
|
44 |
+
"""Constructs a ResNet model.
|
45 |
+
Args:
|
46 |
+
num_layers (int): Number of resnet layers. Must be 18 or 50
|
47 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
48 |
+
num_input_images (int): Number of frames stacked as input
|
49 |
+
"""
|
50 |
+
assert num_layers in [18, 50], "Can only run with 18 or 50 layer resnet"
|
51 |
+
blocks = {18: [2, 2, 2, 2], 50: [3, 4, 6, 3]}[num_layers]
|
52 |
+
block_type = {18: models.resnet.BasicBlock, 50: models.resnet.Bottleneck}[num_layers]
|
53 |
+
model = ResNetMultiImageInput(block_type, blocks, num_input_images=num_input_images)
|
54 |
+
model, weigths = RESNETS[num_layers]
|
55 |
+
|
56 |
+
if pretrained:
|
57 |
+
loaded = torch.hub.load_state_dict_from_url(weigths.url)
|
58 |
+
loaded['conv1.weight'] = torch.cat(
|
59 |
+
[loaded['conv1.weight']] * num_input_images, 1) / num_input_images
|
60 |
+
model.load_state_dict(loaded)
|
61 |
+
return model
|
62 |
+
|
63 |
+
|
64 |
+
class ResnetEncoder(nn.Module):
|
65 |
+
"""Pytorch module for a resnet encoder
|
66 |
+
"""
|
67 |
+
def __init__(self, num_layers, pretrained, bn_order, num_input_images=1):
|
68 |
+
super(ResnetEncoder, self).__init__()
|
69 |
+
|
70 |
+
self.num_ch_enc = np.array([64, 64, 128, 256, 512])
|
71 |
+
self.bn_order = bn_order
|
72 |
+
|
73 |
+
if num_layers not in RESNETS:
|
74 |
+
raise ValueError("{} is not a valid number of resnet layers".format(num_layers))
|
75 |
+
|
76 |
+
if num_input_images > 1:
|
77 |
+
self.encoder = resnet_multiimage_input(num_layers, pretrained, num_input_images)
|
78 |
+
else:
|
79 |
+
model, weights = RESNETS[num_layers]
|
80 |
+
self.encoder = model(weights=weights)
|
81 |
+
|
82 |
+
if num_layers > 34:
|
83 |
+
self.num_ch_enc[1:] *= 4
|
84 |
+
|
85 |
+
def forward(self, input_image):
|
86 |
+
encoder = self.encoder
|
87 |
+
features = []
|
88 |
+
x = (input_image - 0.45) / 0.225
|
89 |
+
x = encoder.conv1(x)
|
90 |
+
|
91 |
+
if self.bn_order == "pre_bn":
|
92 |
+
# Concatenating pre-norm features allows us to
|
93 |
+
# keep the scale and shift of RGB colours
|
94 |
+
# and recover them at output
|
95 |
+
features.append(x)
|
96 |
+
x = encoder.bn1(x)
|
97 |
+
x = encoder.relu(x)
|
98 |
+
features.append(encoder.layer1(encoder.maxpool(x)))
|
99 |
+
elif self.bn_order == "monodepth":
|
100 |
+
# Batchnorm gets rid of constants due to colour shift
|
101 |
+
# will make the network not able to recover absolute colour shift
|
102 |
+
# of the input image
|
103 |
+
# used in old models
|
104 |
+
x = encoder.bn1(x)
|
105 |
+
x = encoder.relu(x)
|
106 |
+
features.append(x)
|
107 |
+
features.append(encoder.layer1(encoder.maxpool(x)))
|
108 |
+
else:
|
109 |
+
assert False
|
110 |
+
|
111 |
+
features.append(encoder.layer2(features[-1]))
|
112 |
+
features.append(encoder.layer3(features[-1]))
|
113 |
+
features.append(encoder.layer4(features[-1]))
|
114 |
+
|
115 |
+
return features
|
flash3d/networks/unidepth.py
ADDED
@@ -0,0 +1,577 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import List, Tuple
|
4 |
+
from math import ceil
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torchvision.transforms.functional as TF
|
9 |
+
from einops import rearrange
|
10 |
+
|
11 |
+
from unidepth.models.unidepthv1 import UniDepthV1
|
12 |
+
from unidepth.utils.constants import IMAGENET_DATASET_MEAN, IMAGENET_DATASET_STD
|
13 |
+
from unidepth.utils.geometric import (
|
14 |
+
generate_rays,
|
15 |
+
spherical_zbuffer_to_euclidean,
|
16 |
+
flat_interpolate,
|
17 |
+
)
|
18 |
+
from unidepth.layers import (
|
19 |
+
MLP,
|
20 |
+
AttentionBlock,
|
21 |
+
NystromBlock,
|
22 |
+
PositionEmbeddingSine,
|
23 |
+
ConvUpsample,
|
24 |
+
)
|
25 |
+
from unidepth.utils.sht import rsh_cart_8
|
26 |
+
|
27 |
+
from networks.gaussian_decoder import get_splits_and_inits
|
28 |
+
|
29 |
+
|
30 |
+
# inference helpers
|
31 |
+
def _paddings(image_shape, network_shape):
|
32 |
+
cur_h, cur_w = image_shape
|
33 |
+
h, w = network_shape
|
34 |
+
pad_top, pad_bottom = (h - cur_h) // 2, h - cur_h - (h - cur_h) // 2
|
35 |
+
pad_left, pad_right = (w - cur_w) // 2, w - cur_w - (w - cur_w) // 2
|
36 |
+
return pad_left, pad_right, pad_top, pad_bottom
|
37 |
+
|
38 |
+
|
39 |
+
def _shapes(image_shape, network_shape):
|
40 |
+
h, w = image_shape
|
41 |
+
input_ratio = w / h
|
42 |
+
output_ratio = network_shape[1] / network_shape[0]
|
43 |
+
if output_ratio > input_ratio:
|
44 |
+
ratio = network_shape[0] / h
|
45 |
+
elif output_ratio <= input_ratio:
|
46 |
+
ratio = network_shape[1] / w
|
47 |
+
return (ceil(h * ratio - 0.5), ceil(w * ratio - 0.5)), ratio
|
48 |
+
|
49 |
+
|
50 |
+
def _preprocess(rgbs, intrinsics, shapes, pads, ratio, output_shapes):
|
51 |
+
(pad_left, pad_right, pad_top, pad_bottom) = pads
|
52 |
+
rgbs = F.interpolate(
|
53 |
+
rgbs, size=shapes, mode="bilinear", align_corners=False, antialias=True
|
54 |
+
)
|
55 |
+
rgbs = F.pad(rgbs, (pad_left, pad_right, pad_top, pad_bottom), mode="constant")
|
56 |
+
if intrinsics is not None:
|
57 |
+
intrinsics = intrinsics.clone()
|
58 |
+
intrinsics[:, 0, 0] = intrinsics[:, 0, 0] * ratio
|
59 |
+
intrinsics[:, 1, 1] = intrinsics[:, 1, 1] * ratio
|
60 |
+
intrinsics[:, 0, 2] = intrinsics[:, 0, 2] * ratio + pad_left
|
61 |
+
intrinsics[:, 1, 2] = intrinsics[:, 1, 2] * ratio + pad_top
|
62 |
+
return rgbs, intrinsics
|
63 |
+
return rgbs, None
|
64 |
+
|
65 |
+
|
66 |
+
def _postprocess(predictions, intrinsics, shapes, pads, ratio, original_shapes):
|
67 |
+
|
68 |
+
(pad_left, pad_right, pad_top, pad_bottom) = pads
|
69 |
+
# pred mean, trim paddings, and upsample to input dim
|
70 |
+
predictions = sum(
|
71 |
+
[
|
72 |
+
F.interpolate(
|
73 |
+
x,
|
74 |
+
size=shapes,
|
75 |
+
mode="bilinear",
|
76 |
+
align_corners=False,
|
77 |
+
antialias=True,
|
78 |
+
)
|
79 |
+
for x in predictions
|
80 |
+
]
|
81 |
+
) / len(predictions)
|
82 |
+
|
83 |
+
shapes = predictions.shape[2:]
|
84 |
+
predictions = predictions[
|
85 |
+
..., pad_top : shapes[0] - pad_bottom, pad_left : shapes[1] - pad_right
|
86 |
+
]
|
87 |
+
|
88 |
+
predictions = F.interpolate(
|
89 |
+
predictions,
|
90 |
+
size=original_shapes,
|
91 |
+
mode="bilinear",
|
92 |
+
align_corners=False,
|
93 |
+
antialias=True,
|
94 |
+
)
|
95 |
+
|
96 |
+
if intrinsics is not None:
|
97 |
+
intrinsics[:, 0, 0] = intrinsics[:, 0, 0] / ratio
|
98 |
+
intrinsics[:, 1, 1] = intrinsics[:, 1, 1] / ratio
|
99 |
+
intrinsics[:, 0, 2] = (intrinsics[:, 0, 2] - pad_left) / ratio
|
100 |
+
intrinsics[:, 1, 2] = (intrinsics[:, 1, 2] - pad_top) / ratio
|
101 |
+
|
102 |
+
return predictions, intrinsics
|
103 |
+
|
104 |
+
|
105 |
+
def scale_intrinsics_xy(intrinsics, x_ratio, y_ratio):
|
106 |
+
intrinsics = intrinsics.clone()
|
107 |
+
intrinsics[:, 0, 0] = intrinsics[:, 0, 0] * x_ratio
|
108 |
+
intrinsics[:, 1, 1] = intrinsics[:, 1, 1] * y_ratio
|
109 |
+
intrinsics[:, 0, 2] = intrinsics[:, 0, 2] * x_ratio
|
110 |
+
intrinsics[:, 1, 2] = intrinsics[:, 1, 2] * y_ratio
|
111 |
+
return intrinsics
|
112 |
+
|
113 |
+
|
114 |
+
def scale_intrinsics(intrinsics, ratio):
|
115 |
+
intrinsics = intrinsics.clone()
|
116 |
+
intrinsics[:, 0, 0] = intrinsics[:, 0, 0] * ratio
|
117 |
+
intrinsics[:, 1, 1] = intrinsics[:, 1, 1] * ratio
|
118 |
+
intrinsics[:, 0, 2] = intrinsics[:, 0, 2] * ratio
|
119 |
+
intrinsics[:, 1, 2] = intrinsics[:, 1, 2] * ratio
|
120 |
+
return intrinsics
|
121 |
+
|
122 |
+
|
123 |
+
def unidepthv1_forward(model, rgbs, intrinsics, skip_camera,
|
124 |
+
return_raw_preds=False):
|
125 |
+
B, _, H, W = rgbs.shape
|
126 |
+
|
127 |
+
rgbs = TF.normalize(
|
128 |
+
rgbs,
|
129 |
+
mean=IMAGENET_DATASET_MEAN,
|
130 |
+
std=IMAGENET_DATASET_STD,
|
131 |
+
)
|
132 |
+
|
133 |
+
(h, w), ratio = _shapes((H, W), model.image_shape)
|
134 |
+
pad_left, pad_right, pad_top, pad_bottom = _paddings((h, w), model.image_shape)
|
135 |
+
rgbs, gt_intrinsics = _preprocess(
|
136 |
+
rgbs,
|
137 |
+
intrinsics,
|
138 |
+
(h, w),
|
139 |
+
(pad_left, pad_right, pad_top, pad_bottom),
|
140 |
+
ratio,
|
141 |
+
model.image_shape,
|
142 |
+
)
|
143 |
+
|
144 |
+
encoder_outputs, cls_tokens = model.pixel_encoder(rgbs)
|
145 |
+
if "dino" in model.pixel_encoder.__class__.__name__.lower():
|
146 |
+
encoder_outputs = [
|
147 |
+
(x + y.unsqueeze(1)).contiguous()
|
148 |
+
for x, y in zip(encoder_outputs, cls_tokens)
|
149 |
+
]
|
150 |
+
|
151 |
+
# get data for decoder and adapt to given camera
|
152 |
+
inputs = {}
|
153 |
+
inputs["encoder_outputs"] = encoder_outputs
|
154 |
+
inputs["cls_tokens"] = cls_tokens
|
155 |
+
inputs["image"] = rgbs
|
156 |
+
if gt_intrinsics is not None:
|
157 |
+
rays, angles = generate_rays(
|
158 |
+
gt_intrinsics, model.image_shape, noisy=False
|
159 |
+
)
|
160 |
+
inputs["rays"] = rays
|
161 |
+
inputs["angles"] = angles
|
162 |
+
inputs["K"] = gt_intrinsics
|
163 |
+
model.pixel_decoder.test_fixed_camera = True
|
164 |
+
model.pixel_decoder.skip_camera = skip_camera
|
165 |
+
|
166 |
+
# decode all
|
167 |
+
pred_intrinsics, predictions, features, rays = model.pixel_decoder(inputs, {})
|
168 |
+
|
169 |
+
pads = (pad_left, pad_right, pad_top, pad_bottom)
|
170 |
+
|
171 |
+
# undo the reshaping and get original image size (slow)
|
172 |
+
predictions, pred_intrinsics = _postprocess(
|
173 |
+
predictions,
|
174 |
+
pred_intrinsics,
|
175 |
+
model.image_shape,
|
176 |
+
pads,
|
177 |
+
ratio,
|
178 |
+
(H, W),
|
179 |
+
)
|
180 |
+
|
181 |
+
if return_raw_preds:
|
182 |
+
return inputs, predictions
|
183 |
+
|
184 |
+
# final 3D points backprojection
|
185 |
+
intrinsics = gt_intrinsics if gt_intrinsics is not None else pred_intrinsics
|
186 |
+
angles = generate_rays(intrinsics, (H, W), noisy=False)[-1]
|
187 |
+
angles = rearrange(angles, "b (h w) c -> b c h w", h=H, w=W)
|
188 |
+
points_3d = torch.cat((angles, predictions), dim=1)
|
189 |
+
points_3d = spherical_zbuffer_to_euclidean(
|
190 |
+
points_3d.permute(0, 2, 3, 1)
|
191 |
+
).permute(0, 3, 1, 2)
|
192 |
+
|
193 |
+
# output data
|
194 |
+
outputs = {
|
195 |
+
"intrinsics": intrinsics,
|
196 |
+
"points": points_3d,
|
197 |
+
"depth": predictions[:, -1:],
|
198 |
+
"depth_feats": features,
|
199 |
+
"rays": rays,
|
200 |
+
"padding": pads
|
201 |
+
}
|
202 |
+
model.pixel_decoder.test_fixed_camera = False
|
203 |
+
model.pixel_decoder.skip_camera = False
|
204 |
+
return inputs, outputs
|
205 |
+
|
206 |
+
class UniDepthDepth(nn.Module):
|
207 |
+
def __init__(
|
208 |
+
self,
|
209 |
+
cfg,
|
210 |
+
return_raw_preds=False
|
211 |
+
):
|
212 |
+
super().__init__()
|
213 |
+
|
214 |
+
self.cfg = cfg
|
215 |
+
self.return_raw_preds = return_raw_preds
|
216 |
+
|
217 |
+
if "cnvnxtl" in cfg.model.name:
|
218 |
+
self.depth_prediction_model = UniDepthV1.from_pretrained("lpiccinelli/unidepth-v1-cnvnxtl")
|
219 |
+
elif "vit" in cfg.model.name:
|
220 |
+
self.depth_prediction_model = UniDepthV1.from_pretrained("lpiccinelli/unidepth-v1-vitl14")
|
221 |
+
|
222 |
+
self.skip_camera = True
|
223 |
+
|
224 |
+
def get_depth(self, img, intrinsics):
|
225 |
+
depth_inputs, outputs = unidepthv1_forward(
|
226 |
+
self.depth_prediction_model,
|
227 |
+
img,
|
228 |
+
intrinsics,
|
229 |
+
self.skip_camera,
|
230 |
+
return_raw_preds=self.return_raw_preds)
|
231 |
+
return outputs
|
232 |
+
|
233 |
+
def forward(self, inputs):
|
234 |
+
input_img = inputs["color_aug", 0, 0]
|
235 |
+
# here we need the intrinsics of the source image to condition on
|
236 |
+
# the depth prediction. needs to account for padding
|
237 |
+
if ("K_src", 0) in inputs:
|
238 |
+
intrinsics = inputs[("K_src", 0)]
|
239 |
+
else:
|
240 |
+
intrinsics = None
|
241 |
+
|
242 |
+
depth_inputs, outputs = unidepthv1_forward(
|
243 |
+
self.depth_prediction_model,
|
244 |
+
input_img,
|
245 |
+
intrinsics,
|
246 |
+
self.skip_camera,
|
247 |
+
return_raw_preds=self.return_raw_preds)
|
248 |
+
|
249 |
+
return depth_inputs, outputs
|
250 |
+
|
251 |
+
class UniDepthUnprojector(nn.Module):
|
252 |
+
def __init__(
|
253 |
+
self,
|
254 |
+
cfg
|
255 |
+
):
|
256 |
+
super().__init__()
|
257 |
+
|
258 |
+
self.cfg = cfg
|
259 |
+
|
260 |
+
if cfg.model.name == "unidepth_unprojector_cnvnxtl":
|
261 |
+
model = UniDepthV1.from_pretrained("lpiccinelli/unidepth-v1-cnvnxtl")
|
262 |
+
elif cfg.model.name == "unidepth_unprojector_vit":
|
263 |
+
model = UniDepthV1.from_pretrained("lpiccinelli/unidepth-v1-vitl14")
|
264 |
+
self.unidepth = model
|
265 |
+
|
266 |
+
self.skip_camera = True
|
267 |
+
|
268 |
+
self.register_buffer("gauss_opacity", torch.ones(1, 1, 1).float())
|
269 |
+
self.register_buffer("gauss_scaling", torch.ones(3, 1, 1).float())
|
270 |
+
self.register_buffer("gauss_rotation", torch.ones(4, 1, 1).float() * 0.5)
|
271 |
+
self.register_buffer("gauss_features_rest", torch.zeros(9, 1, 1).float())
|
272 |
+
self.register_buffer("gauss_offset", torch.zeros(3, 1, 1).float())
|
273 |
+
|
274 |
+
self.all_params = nn.ParameterDict({
|
275 |
+
"opacity_scaling": nn.Parameter(torch.tensor(cfg.model.opacity_bias).float()),
|
276 |
+
"scale_scaling": nn.Parameter(torch.tensor(cfg.model.scale_bias).float()),
|
277 |
+
"colour_scaling": nn.Parameter(torch.tensor(self.cfg.model.colour_scale).float())})
|
278 |
+
|
279 |
+
|
280 |
+
self.scaling_activation = torch.exp
|
281 |
+
self.opacity_activation = torch.sigmoid
|
282 |
+
self.relu = nn.ReLU()
|
283 |
+
|
284 |
+
def get_parameter_groups(self):
|
285 |
+
# tune scalars for size, opacity and colour modulation
|
286 |
+
return [{'params': self.all_params.parameters()}]
|
287 |
+
|
288 |
+
def forward(self, inputs):
|
289 |
+
model = self.unidepth
|
290 |
+
input_img = inputs["color_aug", 0, 0]
|
291 |
+
# here we need the intrinsics of the source image to condition on
|
292 |
+
# the depth prediction. needs to account for padding
|
293 |
+
intrinsics = inputs[("K_src", 0)]
|
294 |
+
b, c, h, w = inputs["color_aug", 0, 0].shape
|
295 |
+
|
296 |
+
with torch.no_grad():
|
297 |
+
_, depth_outs = unidepthv1_forward(model, input_img, intrinsics, self.skip_camera)
|
298 |
+
|
299 |
+
outs = {}
|
300 |
+
|
301 |
+
outs[("gauss_opacity", 0)] = self.gauss_opacity.unsqueeze(0).expand(depth_outs["depth"].shape[0], -1, h, w) \
|
302 |
+
* self.opacity_activation(self.all_params["opacity_scaling"])
|
303 |
+
if not self.cfg.model.scale_with_depth:
|
304 |
+
outs[("gauss_scaling", 0)] = self.gauss_scaling.unsqueeze(0).expand(depth_outs["depth"].shape[0], -1, h, w) \
|
305 |
+
* self.scaling_activation(self.all_params["scale_scaling"])
|
306 |
+
else:
|
307 |
+
outs[("gauss_scaling", 0)] = self.gauss_scaling.unsqueeze(0).expand(depth_outs["depth"].shape[0], -1, h, w) \
|
308 |
+
* self.scaling_activation(self.all_params["scale_scaling"]) * depth_outs["depth"] / 10.0
|
309 |
+
outs[("gauss_rotation", 0)] = self.gauss_rotation.unsqueeze(0).expand(depth_outs["depth"].shape[0], -1, h, w)
|
310 |
+
outs[("gauss_offset", 0)] = self.gauss_offset.unsqueeze(0).expand(depth_outs["depth"].shape[0], -1, h, w)
|
311 |
+
outs[("gauss_features_rest", 0)] = self.gauss_features_rest.unsqueeze(0).expand(depth_outs["depth"].shape[0], -1, h, w)
|
312 |
+
# rendering adds 0.5 to go from rendered colours to output
|
313 |
+
outs[("gauss_features_dc", 0)] = (input_img - 0.5)* self.relu(self.all_params["colour_scaling"])
|
314 |
+
|
315 |
+
outs[("depth", 0)] = depth_outs["depth"]
|
316 |
+
|
317 |
+
return outs
|
318 |
+
|
319 |
+
class UniDepthSplatter(nn.Module):
|
320 |
+
def __init__(
|
321 |
+
self,
|
322 |
+
cfg
|
323 |
+
):
|
324 |
+
super().__init__()
|
325 |
+
|
326 |
+
self.cfg = cfg
|
327 |
+
|
328 |
+
config_path = Path("/work/eldar/src/UniDepth")
|
329 |
+
with open(config_path / "configs/config_v1_cnvnxtl.json") as f:
|
330 |
+
config = json.load(f)
|
331 |
+
self.unidepth = UniDepthDepth(self.cfg)
|
332 |
+
|
333 |
+
hidden_dim = config["model"]["pixel_decoder"]["hidden_dim"]
|
334 |
+
expansion = config["model"]["expansion"]
|
335 |
+
depth = config["model"]["pixel_decoder"]["depths"]
|
336 |
+
num_heads = config["model"]["num_heads"]
|
337 |
+
dropout = config["model"]["pixel_decoder"]["dropout"]
|
338 |
+
layer_scale = 1.0
|
339 |
+
self.splat_decoder = GaussSplatHead(
|
340 |
+
cfg,
|
341 |
+
hidden_dim=hidden_dim,
|
342 |
+
num_heads=num_heads,
|
343 |
+
expansion=expansion,
|
344 |
+
depths=depth,
|
345 |
+
camera_dim=81,
|
346 |
+
dropout=dropout,
|
347 |
+
layer_scale=layer_scale,
|
348 |
+
)
|
349 |
+
|
350 |
+
self.skip_camera = True
|
351 |
+
|
352 |
+
def get_parameter_groups(self):
|
353 |
+
base_lr = self.cfg.optimiser.learning_rate
|
354 |
+
return [
|
355 |
+
{'params': self.unidepth.parameters(), "lr": base_lr * 0.05},
|
356 |
+
{'params': self.splat_decoder.parameters()}
|
357 |
+
]
|
358 |
+
|
359 |
+
def forward(self, inputs):
|
360 |
+
gauss_head = self.splat_decoder
|
361 |
+
|
362 |
+
depth_inputs, depth_outs = self.unidepth(inputs)
|
363 |
+
depth_feats = depth_outs["depth_feats"]
|
364 |
+
rays = depth_outs["rays"]
|
365 |
+
padding = depth_outs["padding"]
|
366 |
+
|
367 |
+
B, _, H, W = depth_inputs["image"].shape
|
368 |
+
|
369 |
+
# TODO remove hardcoded shapes
|
370 |
+
common_shape = (28, 38)
|
371 |
+
gauss_head.set_shapes(common_shape)
|
372 |
+
gauss_head.set_original_shapes((H, W))
|
373 |
+
|
374 |
+
depth_feats = rearrange(depth_feats, "b c h w -> b (h w) c")
|
375 |
+
outs = gauss_head(
|
376 |
+
latents_16=depth_feats,
|
377 |
+
rays_hr=rays,
|
378 |
+
)
|
379 |
+
for k, v in outs.items():
|
380 |
+
pred, _ = _postprocess([v], None, self.unidepth.depth_prediction_model.image_shape,
|
381 |
+
padding, None, inputs["color_aug", 0, 0].shape[2:4])
|
382 |
+
outs[k] = pred
|
383 |
+
outs[("depth", 0)] = depth_outs["depth"]
|
384 |
+
|
385 |
+
return outs
|
386 |
+
|
387 |
+
|
388 |
+
class GaussSplatHead(nn.Module):
|
389 |
+
def __init__(
|
390 |
+
self,
|
391 |
+
cfg,
|
392 |
+
hidden_dim: int,
|
393 |
+
num_heads: int = 8,
|
394 |
+
expansion: int = 4,
|
395 |
+
depths: int | list[int] = 4,
|
396 |
+
camera_dim: int = 256,
|
397 |
+
dropout: float = 0.0,
|
398 |
+
layer_scale: float = 1.0,
|
399 |
+
) -> None:
|
400 |
+
super().__init__()
|
401 |
+
|
402 |
+
self.cfg = cfg
|
403 |
+
|
404 |
+
if isinstance(depths, int):
|
405 |
+
depths = [depths] * 3
|
406 |
+
assert len(depths) == 3
|
407 |
+
|
408 |
+
self.project_rays16 = MLP(
|
409 |
+
camera_dim, expansion=expansion, dropout=dropout, output_dim=hidden_dim
|
410 |
+
)
|
411 |
+
self.project_rays8 = MLP(
|
412 |
+
camera_dim, expansion=expansion, dropout=dropout, output_dim=hidden_dim // 2
|
413 |
+
)
|
414 |
+
self.project_rays4 = MLP(
|
415 |
+
camera_dim, expansion=expansion, dropout=dropout, output_dim=hidden_dim // 4
|
416 |
+
)
|
417 |
+
|
418 |
+
self.layers_8 = nn.ModuleList([])
|
419 |
+
self.layers_4 = nn.ModuleList([])
|
420 |
+
layers_16 = nn.ModuleList([])
|
421 |
+
|
422 |
+
self.up8 = ConvUpsample(
|
423 |
+
hidden_dim, expansion=expansion, layer_scale=layer_scale
|
424 |
+
)
|
425 |
+
self.up4 = ConvUpsample(
|
426 |
+
hidden_dim // 2, expansion=expansion, layer_scale=layer_scale
|
427 |
+
)
|
428 |
+
self.up2 = ConvUpsample(
|
429 |
+
hidden_dim // 4, expansion=expansion, layer_scale=layer_scale
|
430 |
+
)
|
431 |
+
|
432 |
+
split_dimensions, scale, bias = get_splits_and_inits(cfg)
|
433 |
+
start = 1
|
434 |
+
self.split_dimensions = split_dimensions[start:]
|
435 |
+
scale = scale[start:]
|
436 |
+
bias = bias[start:]
|
437 |
+
|
438 |
+
self.num_output_channels = sum(self.split_dimensions)
|
439 |
+
|
440 |
+
self.out2 = nn.Conv2d(hidden_dim // 8, self.num_output_channels, 3, padding=1)
|
441 |
+
# self.out4 = nn.Conv2d(hidden_dim // 4, self.num_output_channels, 3, padding=1)
|
442 |
+
# self.out8 = nn.Conv2d(hidden_dim // 2, self.num_output_channels, 3, padding=1)
|
443 |
+
|
444 |
+
start_channels = 0
|
445 |
+
for out_channel, b, s in zip(self.split_dimensions, bias, scale):
|
446 |
+
nn.init.xavier_uniform_(
|
447 |
+
self.out2.weight[start_channels:start_channels+out_channel,
|
448 |
+
:, :, :], s)
|
449 |
+
nn.init.constant_(
|
450 |
+
self.out2.bias[start_channels:start_channels+out_channel], b)
|
451 |
+
start_channels += out_channel
|
452 |
+
|
453 |
+
for i, (blk_lst, depth) in enumerate(
|
454 |
+
zip([layers_16, self.layers_8, self.layers_4], depths)
|
455 |
+
):
|
456 |
+
if i == 0:
|
457 |
+
continue
|
458 |
+
attn_cls = AttentionBlock if i == 0 else NystromBlock
|
459 |
+
for _ in range(depth):
|
460 |
+
blk_lst.append(
|
461 |
+
attn_cls(
|
462 |
+
hidden_dim // (2**i),
|
463 |
+
num_heads=num_heads // (2**i),
|
464 |
+
expansion=expansion,
|
465 |
+
dropout=dropout,
|
466 |
+
layer_scale=layer_scale,
|
467 |
+
)
|
468 |
+
)
|
469 |
+
|
470 |
+
self.scaling_activation = torch.exp
|
471 |
+
self.opacity_activation = torch.sigmoid
|
472 |
+
self.rotation_activation = torch.nn.functional.normalize
|
473 |
+
self.scaling_lambda = cfg.model.scale_lambda
|
474 |
+
self.sigmoid = nn.Sigmoid()
|
475 |
+
|
476 |
+
def set_original_shapes(self, shapes: Tuple[int, int]):
|
477 |
+
self.original_shapes = shapes
|
478 |
+
|
479 |
+
def set_shapes(self, shapes: Tuple[int, int]):
|
480 |
+
self.shapes = shapes
|
481 |
+
|
482 |
+
def forward(
|
483 |
+
self, latents_16: torch.Tensor, rays_hr: torch.Tensor
|
484 |
+
) -> torch.Tensor:
|
485 |
+
shapes = self.shapes
|
486 |
+
|
487 |
+
# camera_embedding
|
488 |
+
# torch.cuda.synchronize()
|
489 |
+
# start = time()
|
490 |
+
rays_embedding_16 = F.normalize(
|
491 |
+
flat_interpolate(rays_hr, old=self.original_shapes, new=shapes), dim=-1
|
492 |
+
)
|
493 |
+
rays_embedding_8 = F.normalize(
|
494 |
+
flat_interpolate(
|
495 |
+
rays_hr, old=self.original_shapes, new=[x * 2 for x in shapes]
|
496 |
+
),
|
497 |
+
dim=-1,
|
498 |
+
)
|
499 |
+
rays_embedding_4 = F.normalize(
|
500 |
+
flat_interpolate(
|
501 |
+
rays_hr, old=self.original_shapes, new=[x * 4 for x in shapes]
|
502 |
+
),
|
503 |
+
dim=-1,
|
504 |
+
)
|
505 |
+
rays_embedding_16 = self.project_rays16(rsh_cart_8(rays_embedding_16))
|
506 |
+
rays_embedding_8 = self.project_rays8(rsh_cart_8(rays_embedding_8))
|
507 |
+
rays_embedding_4 = self.project_rays4(rsh_cart_8(rays_embedding_4))
|
508 |
+
|
509 |
+
# Block 16 - Out 8
|
510 |
+
latents_8 = self.up8(
|
511 |
+
rearrange(
|
512 |
+
latents_16 + rays_embedding_16,
|
513 |
+
"b (h w) c -> b c h w",
|
514 |
+
h=shapes[0],
|
515 |
+
w=shapes[1],
|
516 |
+
).contiguous()
|
517 |
+
)
|
518 |
+
# out8 = self.out8(
|
519 |
+
# rearrange(
|
520 |
+
# latents_8, "b (h w) c -> b c h w", h=shapes[0] * 2, w=shapes[1] * 2
|
521 |
+
# )
|
522 |
+
# )
|
523 |
+
|
524 |
+
# Block 8 - Out 4
|
525 |
+
for layer in self.layers_8:
|
526 |
+
latents_8 = layer(latents_8, pos_embed=rays_embedding_8)
|
527 |
+
latents_4 = self.up4(
|
528 |
+
rearrange(
|
529 |
+
latents_8 + rays_embedding_8,
|
530 |
+
"b (h w) c -> b c h w",
|
531 |
+
h=shapes[0] * 2,
|
532 |
+
w=shapes[1] * 2,
|
533 |
+
).contiguous()
|
534 |
+
)
|
535 |
+
# out4 = self.out4(
|
536 |
+
# rearrange(
|
537 |
+
# latents_4, "b (h w) c -> b c h w", h=shapes[0] * 4, w=shapes[1] * 4
|
538 |
+
# )
|
539 |
+
# )
|
540 |
+
|
541 |
+
# Block 4 - Out 2
|
542 |
+
for layer in self.layers_4:
|
543 |
+
latents_4 = layer(latents_4, pos_embed=rays_embedding_4)
|
544 |
+
latents_2 = self.up2(
|
545 |
+
rearrange(
|
546 |
+
latents_4 + rays_embedding_4,
|
547 |
+
"b (h w) c -> b c h w",
|
548 |
+
h=shapes[0] * 4,
|
549 |
+
w=shapes[1] * 4,
|
550 |
+
).contiguous()
|
551 |
+
)
|
552 |
+
out2 = self.out2(
|
553 |
+
rearrange(
|
554 |
+
latents_2, "b (h w) c -> b c h w", h=shapes[0] * 8, w=shapes[1] * 8
|
555 |
+
)
|
556 |
+
)
|
557 |
+
|
558 |
+
split_network_outputs = out2.split(self.split_dimensions, dim=1)
|
559 |
+
last = 5
|
560 |
+
offset, opacity, scaling, rotation, feat_dc = split_network_outputs[:last]
|
561 |
+
|
562 |
+
out = {
|
563 |
+
("gauss_opacity", 0): self.opacity_activation(opacity),
|
564 |
+
("gauss_scaling", 0): self.scaling_activation(scaling) * self.scaling_lambda,
|
565 |
+
("gauss_rotation", 0): self.rotation_activation(rotation),
|
566 |
+
("gauss_features_dc", 0): feat_dc
|
567 |
+
}
|
568 |
+
|
569 |
+
if self.cfg.model.max_sh_degree > 0:
|
570 |
+
features_rest = split_network_outputs[last]
|
571 |
+
out[("gauss_features_rest", 0)] = features_rest
|
572 |
+
|
573 |
+
if self.cfg.model.predict_offset:
|
574 |
+
out[("gauss_offset", 0)] = offset
|
575 |
+
|
576 |
+
return out
|
577 |
+
# return out8, out4, out2, proj_latents_16
|
flash3d/networks/unidepth_extension.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from einops import rearrange
|
5 |
+
|
6 |
+
from .unidepth import UniDepthDepth
|
7 |
+
from unidepth.models import UniDepthV1
|
8 |
+
from .resnet_encoder import ResnetEncoder
|
9 |
+
from .gaussian_decoder import GaussianDecoder
|
10 |
+
from .depth_decoder import DepthDecoder
|
11 |
+
|
12 |
+
from networks.layers import disp_to_depth
|
13 |
+
from networks.gaussian_decoder import get_splits_and_inits
|
14 |
+
|
15 |
+
|
16 |
+
class UniDepthExtended(nn.Module):
|
17 |
+
def __init__(self,cfg):
|
18 |
+
super().__init__()
|
19 |
+
|
20 |
+
self.cfg = cfg
|
21 |
+
|
22 |
+
self.unidepth = UniDepthDepth(cfg)
|
23 |
+
# self.unidepth = UniDepthV1.from_pretrained("lpiccinelli/unidepth-v1-vitl14")
|
24 |
+
|
25 |
+
self.parameters_to_train = []
|
26 |
+
if self.cfg.model.splat_branch == "resnet":
|
27 |
+
self.encoder = ResnetEncoder(cfg.model.num_layers,
|
28 |
+
cfg.model.weights_init == "pretrained",
|
29 |
+
cfg.model.resnet_bn_order
|
30 |
+
)
|
31 |
+
# change encoder to take depth as conditioning
|
32 |
+
if self.cfg.model.depth_cond:
|
33 |
+
self.encoder.encoder.conv1 = nn.Conv2d(
|
34 |
+
4,
|
35 |
+
self.encoder.encoder.conv1.out_channels,
|
36 |
+
kernel_size = self.encoder.encoder.conv1.kernel_size,
|
37 |
+
padding = self.encoder.encoder.conv1.padding,
|
38 |
+
stride = self.encoder.encoder.conv1.stride
|
39 |
+
)
|
40 |
+
self.parameters_to_train += [{"params": self.encoder.parameters()}]
|
41 |
+
|
42 |
+
# use depth branch only for more gaussians
|
43 |
+
if cfg.model.gaussians_per_pixel > 1:
|
44 |
+
models ={}
|
45 |
+
models["depth"] = DepthDecoder(cfg, self.encoder.num_ch_enc)
|
46 |
+
self.parameters_to_train +=[{"params": models["depth"].parameters()}]
|
47 |
+
for i in range(cfg.model.gaussians_per_pixel):
|
48 |
+
models["gauss_decoder_"+str(i)] = GaussianDecoder(cfg, self.encoder.num_ch_enc)
|
49 |
+
self.parameters_to_train += [{"params": models["gauss_decoder_"+str(i)].parameters()}]
|
50 |
+
if cfg.model.one_gauss_decoder:
|
51 |
+
break
|
52 |
+
self.models = nn.ModuleDict(models)
|
53 |
+
else:
|
54 |
+
self.gauss_decoder = GaussianDecoder(cfg, self.encoder.num_ch_enc)
|
55 |
+
self.parameters_to_train += [{"params": self.gauss_decoder.parameters()}]
|
56 |
+
|
57 |
+
elif self.cfg.model.splat_branch == "unidepth_vit" or self.cfg.model.splat_branch == "unidepth_cnvnxtl":
|
58 |
+
self.splat_branch = UniDepthDepth(cfg,
|
59 |
+
return_raw_preds=True)
|
60 |
+
# modify the head to output the channels for Gaussian parameters
|
61 |
+
self.init_ouput_head_splat_branch()
|
62 |
+
self.parameters_to_train +=[{"params": self.splat_branch.parameters()}]
|
63 |
+
|
64 |
+
self.scaling_activation = torch.exp
|
65 |
+
self.opacity_activation = torch.sigmoid
|
66 |
+
self.rotation_activation = torch.nn.functional.normalize
|
67 |
+
|
68 |
+
def init_ouput_head_splat_branch(self):
|
69 |
+
split_dimensions, scale, bias = get_splits_and_inits(self.cfg)
|
70 |
+
# the first dim in the output is for depth - we don't use that in this branch
|
71 |
+
self.split_dimensions = split_dimensions[1:]
|
72 |
+
scale = scale[1:]
|
73 |
+
bias = bias[1:]
|
74 |
+
|
75 |
+
self.num_output_channels = sum(self.split_dimensions)
|
76 |
+
|
77 |
+
self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out2 = \
|
78 |
+
nn.Conv2d(self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out2.in_channels,
|
79 |
+
self.num_output_channels,
|
80 |
+
kernel_size = self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out2.kernel_size,
|
81 |
+
padding = self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out2.padding)
|
82 |
+
|
83 |
+
self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out4 = \
|
84 |
+
nn.Conv2d(self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out4.in_channels,
|
85 |
+
self.num_output_channels,
|
86 |
+
kernel_size = self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out4.kernel_size,
|
87 |
+
padding = self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out4.padding)
|
88 |
+
|
89 |
+
self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out8 = \
|
90 |
+
nn.Conv2d(self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out8.in_channels,
|
91 |
+
self.num_output_channels,
|
92 |
+
kernel_size = self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out8.kernel_size,
|
93 |
+
padding = self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out8.padding)
|
94 |
+
|
95 |
+
start_channels = 0
|
96 |
+
for out_channel, b, s in zip(split_dimensions, bias, scale):
|
97 |
+
nn.init.xavier_uniform_(
|
98 |
+
self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out2.weight[start_channels:start_channels+out_channel,
|
99 |
+
:, :, :], s)
|
100 |
+
nn.init.constant_(
|
101 |
+
self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out2.bias[start_channels:start_channels+out_channel], b)
|
102 |
+
start_channels += out_channel
|
103 |
+
|
104 |
+
start_channels = 0
|
105 |
+
for out_channel, b, s in zip(split_dimensions, bias, scale):
|
106 |
+
nn.init.xavier_uniform_(
|
107 |
+
self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out4.weight[start_channels:start_channels+out_channel,
|
108 |
+
:, :, :], s)
|
109 |
+
nn.init.constant_(
|
110 |
+
self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out4.bias[start_channels:start_channels+out_channel], b)
|
111 |
+
start_channels += out_channel
|
112 |
+
|
113 |
+
start_channels = 0
|
114 |
+
for out_channel, b, s in zip(split_dimensions, bias, scale):
|
115 |
+
nn.init.xavier_uniform_(
|
116 |
+
self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out8.weight[start_channels:start_channels+out_channel,
|
117 |
+
:, :, :], s)
|
118 |
+
nn.init.constant_(
|
119 |
+
self.splat_branch.depth_prediction_model.pixel_decoder.depth_layer.out8.bias[start_channels:start_channels+out_channel], b)
|
120 |
+
start_channels += out_channel
|
121 |
+
|
122 |
+
def get_parameter_groups(self):
|
123 |
+
# only the resnet encoder and gaussian parameter decoder are optimisable
|
124 |
+
return self.parameters_to_train
|
125 |
+
|
126 |
+
def forward(self, inputs):
|
127 |
+
if ('unidepth', 0, 0) in inputs.keys() and inputs[('unidepth', 0, 0)] is not None:
|
128 |
+
depth_outs = dict()
|
129 |
+
depth_outs["depth"] = inputs[('unidepth', 0, 0)]
|
130 |
+
else:
|
131 |
+
with torch.no_grad():
|
132 |
+
# if self.training and self.cfg.dataset.pad_border_aug > 0:
|
133 |
+
# pad = self.cfg.dataset.pad_border_aug
|
134 |
+
# input = inputs["color_aug", 0, 0][:,:,pad:-pad, pad:-pad]
|
135 |
+
# intrincs = inputs[("K_tgt", 0)]
|
136 |
+
# else:
|
137 |
+
# input = inputs["color_aug", 0, 0]
|
138 |
+
# intrincs = inputs[("K_src", 0)]
|
139 |
+
_, depth_outs = self.unidepth(inputs)
|
140 |
+
# depth_outs = self.unidepth.infer(input, intrincs)
|
141 |
+
# if self.training and self.cfg.dataset.pad_border_aug > 0:
|
142 |
+
# depth_outs["depth"] = F.pad(depth_outs["depth"], (pad,pad,pad,pad), mode="replicate")
|
143 |
+
|
144 |
+
outputs_gauss = {}
|
145 |
+
|
146 |
+
K = depth_outs["intrinsics"]
|
147 |
+
outputs_gauss[("K_src", 0)] = K
|
148 |
+
outputs_gauss[("inv_K_src", 0)] = torch.linalg.inv(K)
|
149 |
+
|
150 |
+
if self.cfg.model.splat_branch == "resnet":
|
151 |
+
if self.cfg.model.depth_cond:
|
152 |
+
# division by 20 is to put depth in a similar range to RGB
|
153 |
+
resnet_input = torch.cat([inputs["color_aug", 0, 0],
|
154 |
+
depth_outs["depth"] / 20.0], dim=1)
|
155 |
+
else:
|
156 |
+
resnet_input = inputs["color_aug", 0, 0]
|
157 |
+
resnet_features = self.encoder(resnet_input)
|
158 |
+
if self.cfg.model.gaussians_per_pixel > 1:
|
159 |
+
pred_depth = dict()
|
160 |
+
depth = self.models["depth"](resnet_features)
|
161 |
+
if self.cfg.model.depth_type == "disp":
|
162 |
+
for key, v in depth.items():
|
163 |
+
_, pred_depth[("depth", key[1])] = disp_to_depth(v, self.cfg.model.min_depth, self.cfg.model.max_depth)
|
164 |
+
elif self.cfg.model.depth_type in ["depth", "depth_inc"]:
|
165 |
+
pred_depth = depth
|
166 |
+
pred_depth[("depth", 0)] = rearrange(pred_depth[("depth", 0)], "(b n) ... -> b n ...", n=self.cfg.model.gaussians_per_pixel - 1)
|
167 |
+
if self.cfg.model.depth_type in ["depth_inc", "disp_inc"]:
|
168 |
+
pred_depth[("depth", 0)] = torch.cumsum(torch.cat((depth_outs["depth"][:,None,...], pred_depth[("depth", 0)]), dim=1), dim=1)
|
169 |
+
else:
|
170 |
+
pred_depth[("depth", 0)] = torch.cat((depth_outs["depth"][:,None,...], pred_depth[("depth", 0)]), dim=1)
|
171 |
+
outputs_gauss[("depth", 0)] = rearrange(pred_depth[("depth", 0)], "b n c ... -> (b n) c ...", n = self.cfg.model.gaussians_per_pixel)
|
172 |
+
gauss_outs = dict()
|
173 |
+
for i in range(self.cfg.model.gaussians_per_pixel):
|
174 |
+
outs = self.models["gauss_decoder_"+str(i)](resnet_features)
|
175 |
+
if not self.cfg.model.one_gauss_decoder:
|
176 |
+
for key, v in outs.items():
|
177 |
+
gauss_outs[key] = outs[key][:,None,...] if i==0 else torch.cat([gauss_outs[key], outs[key][:,None,...]], dim=1)
|
178 |
+
else:
|
179 |
+
gauss_outs |= outs
|
180 |
+
for key, v in gauss_outs.items():
|
181 |
+
gauss_outs[key] = rearrange(gauss_outs[key], 'b n ... -> (b n) ...')
|
182 |
+
outputs_gauss |= gauss_outs
|
183 |
+
else:
|
184 |
+
outputs_gauss[("depth", 0)] = depth_outs["depth"]
|
185 |
+
outputs_gauss |= self.gauss_decoder(resnet_features)
|
186 |
+
elif self.cfg.model.splat_branch == "unidepth_vit" or self.cfg.model.splat_branch == "unidepth_cnvnxtl":
|
187 |
+
split_network_outputs = self.splat_branch(inputs)[1].split(self.split_dimensions, dim=1)
|
188 |
+
offset, opacity, scaling, rotation, feat_dc = split_network_outputs[:5]
|
189 |
+
|
190 |
+
outputs_gauss |= {
|
191 |
+
("gauss_opacity", 0): self.opacity_activation(opacity),
|
192 |
+
("gauss_scaling", 0): self.scaling_activation(scaling),
|
193 |
+
("gauss_rotation", 0): self.rotation_activation(rotation),
|
194 |
+
("gauss_features_dc", 0): feat_dc
|
195 |
+
}
|
196 |
+
|
197 |
+
if self.cfg.model.max_sh_degree > 0:
|
198 |
+
features_rest = split_network_outputs[5]
|
199 |
+
outputs_gauss[("gauss_features_rest", 0)] = features_rest
|
200 |
+
|
201 |
+
assert self.cfg.model.predict_offset
|
202 |
+
outputs_gauss[("gauss_offset", 0)] = offset
|
203 |
+
|
204 |
+
return outputs_gauss
|
205 |
+
|
flash3d/unidepth/layers/__init__.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .activation import SwiGLU, GEGLU
|
2 |
+
from .convnext import CvnxtBlock
|
3 |
+
from .attention import AttentionBlock, AttentionDecoderBlock
|
4 |
+
from .nystrom_attention import NystromBlock
|
5 |
+
from .positional_encoding import PositionEmbeddingSine
|
6 |
+
from .upsample import ConvUpsample, ConvUpsampleShuffle
|
7 |
+
from .mlp import MLP
|
8 |
+
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
"SwiGLU",
|
12 |
+
"GEGLU",
|
13 |
+
"CvnxtBlock",
|
14 |
+
"AttentionBlock",
|
15 |
+
"NystromBlock",
|
16 |
+
"PositionEmbeddingSine",
|
17 |
+
"ConvUpsample",
|
18 |
+
"MLP",
|
19 |
+
"ConvUpsampleShuffle",
|
20 |
+
"AttentionDecoderBlock",
|
21 |
+
]
|
flash3d/unidepth/layers/activation.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class SwiGLU(nn.Module):
|
7 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
8 |
+
x, gates = x.chunk(2, dim=-1)
|
9 |
+
return x * F.silu(gates)
|
10 |
+
|
11 |
+
|
12 |
+
class GEGLU(nn.Module):
|
13 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
14 |
+
x, gates = x.chunk(2, dim=-1)
|
15 |
+
return x * F.gelu(gates)
|
flash3d/unidepth/layers/attention.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Luigi Piccinelli
|
3 |
+
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
|
4 |
+
"""
|
5 |
+
|
6 |
+
from functools import partial
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from einops import rearrange
|
12 |
+
|
13 |
+
from .layer_scale import LayerScale
|
14 |
+
from .mlp import MLP
|
15 |
+
|
16 |
+
|
17 |
+
class SimpleAttention(nn.Module):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
dim: int,
|
21 |
+
num_heads: int = 4,
|
22 |
+
dropout: float = 0.0,
|
23 |
+
cosine: bool = False,
|
24 |
+
context_dim: int | None = None,
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
self.dropout = dropout
|
28 |
+
self.num_heads = num_heads
|
29 |
+
self.hidden_dim = dim
|
30 |
+
context_dim = context_dim or dim
|
31 |
+
|
32 |
+
self.kv = nn.Linear(context_dim, dim * 2, bias=False)
|
33 |
+
self.q = nn.Linear(dim, dim, bias=False)
|
34 |
+
self.norm_attnx = nn.LayerNorm(dim)
|
35 |
+
self.norm_attnctx = nn.LayerNorm(context_dim)
|
36 |
+
self.cosine = cosine
|
37 |
+
self.out = nn.Linear(dim, dim)
|
38 |
+
|
39 |
+
def forward(
|
40 |
+
self,
|
41 |
+
x: torch.Tensor,
|
42 |
+
attn_bias: torch.Tensor | None = None,
|
43 |
+
context: torch.Tensor | None = None,
|
44 |
+
pos_embed: torch.Tensor | None = None,
|
45 |
+
pos_embed_context: torch.Tensor | None = None,
|
46 |
+
rope: nn.Module | None = None,
|
47 |
+
) -> torch.Tensor:
|
48 |
+
context = x if context is None else context
|
49 |
+
x = self.norm_attnx(x)
|
50 |
+
context = self.norm_attnctx(context)
|
51 |
+
k, v = rearrange(
|
52 |
+
self.kv(context), "b n (kv h d) -> b h n d kv", h=self.num_heads, kv=2
|
53 |
+
).unbind(dim=-1)
|
54 |
+
q = rearrange(self.q(x), "b n (h d) -> b h n d", h=self.num_heads)
|
55 |
+
|
56 |
+
if rope is not None:
|
57 |
+
q = rope(q)
|
58 |
+
k = rope(k)
|
59 |
+
else:
|
60 |
+
if pos_embed is not None:
|
61 |
+
pos_embed = rearrange(
|
62 |
+
pos_embed, "b n (h d) -> b h n d", h=self.num_heads
|
63 |
+
)
|
64 |
+
q = q + pos_embed
|
65 |
+
if pos_embed_context is not None:
|
66 |
+
pos_embed_context = rearrange(
|
67 |
+
pos_embed_context, "b n (h d) -> b h n d", h=self.num_heads
|
68 |
+
)
|
69 |
+
k = k + pos_embed_context
|
70 |
+
|
71 |
+
if self.cosine:
|
72 |
+
q, k = map(partial(F.normalize, p=2, dim=-1), (q, k)) # cosine sim
|
73 |
+
x = F.scaled_dot_product_attention(
|
74 |
+
q, k, v, dropout_p=self.dropout, attn_mask=attn_bias
|
75 |
+
)
|
76 |
+
x = rearrange(x, "b h n d -> b n (h d)")
|
77 |
+
x = self.out(x)
|
78 |
+
return x
|
79 |
+
|
80 |
+
|
81 |
+
class AttentionBlock(nn.Module):
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
dim: int,
|
85 |
+
num_heads: int = 4,
|
86 |
+
expansion: int = 4,
|
87 |
+
dropout: float = 0.0,
|
88 |
+
cosine: bool = False,
|
89 |
+
gated: bool = False,
|
90 |
+
layer_scale: float = 1.0,
|
91 |
+
context_dim: int | None = None,
|
92 |
+
):
|
93 |
+
super().__init__()
|
94 |
+
self.dropout = dropout
|
95 |
+
self.num_heads = num_heads
|
96 |
+
self.hidden_dim = dim
|
97 |
+
context_dim = context_dim or dim
|
98 |
+
self.mlp = MLP(dim, expansion=expansion, dropout=dropout, gated=gated)
|
99 |
+
self.kv = nn.Linear(context_dim, dim * 2)
|
100 |
+
self.q = nn.Linear(dim, dim)
|
101 |
+
self.norm_attnx = nn.LayerNorm(dim)
|
102 |
+
self.norm_attnctx = nn.LayerNorm(context_dim)
|
103 |
+
self.cosine = cosine
|
104 |
+
self.out = nn.Linear(dim, dim)
|
105 |
+
self.ls1 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity()
|
106 |
+
self.ls2 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity()
|
107 |
+
|
108 |
+
def attn(
|
109 |
+
self,
|
110 |
+
x: torch.Tensor,
|
111 |
+
attn_bias: torch.Tensor | None = None,
|
112 |
+
context: torch.Tensor | None = None,
|
113 |
+
pos_embed: torch.Tensor | None = None,
|
114 |
+
pos_embed_context: torch.Tensor | None = None,
|
115 |
+
rope: nn.Module | None = None,
|
116 |
+
) -> torch.Tensor:
|
117 |
+
x = self.norm_attnx(x)
|
118 |
+
context = self.norm_attnctx(context)
|
119 |
+
k, v = rearrange(
|
120 |
+
self.kv(context), "b n (kv h d) -> b h n d kv", h=self.num_heads, kv=2
|
121 |
+
).unbind(dim=-1)
|
122 |
+
q = rearrange(self.q(x), "b n (h d) -> b h n d", h=self.num_heads)
|
123 |
+
|
124 |
+
if rope is not None:
|
125 |
+
q = rope(q)
|
126 |
+
k = rope(k)
|
127 |
+
else:
|
128 |
+
if pos_embed is not None:
|
129 |
+
pos_embed = rearrange(
|
130 |
+
pos_embed, "b n (h d) -> b h n d", h=self.num_heads
|
131 |
+
)
|
132 |
+
q = q + pos_embed
|
133 |
+
if pos_embed_context is not None:
|
134 |
+
pos_embed_context = rearrange(
|
135 |
+
pos_embed_context, "b n (h d) -> b h n d", h=self.num_heads
|
136 |
+
)
|
137 |
+
k = k + pos_embed_context
|
138 |
+
|
139 |
+
if self.cosine:
|
140 |
+
q, k = map(partial(F.normalize, p=2, dim=-1), (q, k)) # cosine sim
|
141 |
+
|
142 |
+
x = F.scaled_dot_product_attention(
|
143 |
+
q, k, v, dropout_p=self.dropout, attn_mask=attn_bias
|
144 |
+
)
|
145 |
+
x = rearrange(x, "b h n d -> b n (h d)")
|
146 |
+
x = self.out(x)
|
147 |
+
return x
|
148 |
+
|
149 |
+
def forward(
|
150 |
+
self,
|
151 |
+
x: torch.Tensor,
|
152 |
+
attn_bias: torch.Tensor | None = None,
|
153 |
+
context: torch.Tensor | None = None,
|
154 |
+
pos_embed: torch.Tensor | None = None,
|
155 |
+
pos_embed_context: torch.Tensor | None = None,
|
156 |
+
rope: nn.Module | None = None,
|
157 |
+
) -> torch.Tensor:
|
158 |
+
context = x if context is None else context
|
159 |
+
x = (
|
160 |
+
self.ls1(
|
161 |
+
self.attn(
|
162 |
+
x,
|
163 |
+
rope=rope,
|
164 |
+
attn_bias=attn_bias,
|
165 |
+
context=context,
|
166 |
+
pos_embed=pos_embed,
|
167 |
+
pos_embed_context=pos_embed_context,
|
168 |
+
)
|
169 |
+
)
|
170 |
+
+ x
|
171 |
+
)
|
172 |
+
x = self.ls2(self.mlp(x)) + x
|
173 |
+
return x
|
174 |
+
|
175 |
+
|
176 |
+
class AttentionDecoderBlock(nn.Module):
|
177 |
+
def __init__(
|
178 |
+
self,
|
179 |
+
dim: int,
|
180 |
+
num_heads: int = 4,
|
181 |
+
expansion: int = 4,
|
182 |
+
dropout: float = 0.0,
|
183 |
+
cosine: bool = False,
|
184 |
+
gated: bool = False,
|
185 |
+
layer_scale: float = 1.0,
|
186 |
+
context_dim: int | None = None,
|
187 |
+
single_head_ca: bool = True,
|
188 |
+
):
|
189 |
+
super().__init__()
|
190 |
+
self.dropout = dropout
|
191 |
+
self.num_heads = num_heads
|
192 |
+
self.hidden_dim = dim
|
193 |
+
self.single_head_ca = single_head_ca
|
194 |
+
context_dim = context_dim or dim
|
195 |
+
self.mlp = MLP(dim, expansion=expansion, dropout=dropout, gated=gated)
|
196 |
+
self.kv_ca = nn.Linear(context_dim, dim * 2)
|
197 |
+
self.q_ca = nn.Linear(dim, dim)
|
198 |
+
self.kv_sa = nn.Linear(dim, dim * 2)
|
199 |
+
self.q_sa = nn.Linear(dim, dim)
|
200 |
+
self.norm_x_sa = nn.LayerNorm(dim)
|
201 |
+
self.norm_x_ca = nn.LayerNorm(dim)
|
202 |
+
self.norm_ctx_ca = nn.LayerNorm(context_dim)
|
203 |
+
self.cosine = cosine
|
204 |
+
self.out_ca = nn.Linear(dim, dim)
|
205 |
+
self.out_sa = nn.Linear(dim, dim)
|
206 |
+
self.ls1 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity()
|
207 |
+
self.ls2 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity()
|
208 |
+
self.ls3 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity()
|
209 |
+
|
210 |
+
def cross_attn(
|
211 |
+
self,
|
212 |
+
x: torch.Tensor,
|
213 |
+
attn_bias: torch.Tensor | None = None,
|
214 |
+
context: torch.Tensor | None = None,
|
215 |
+
pos_embed: torch.Tensor | None = None,
|
216 |
+
pos_embed_context: torch.Tensor | None = None,
|
217 |
+
rope: nn.Module | None = None,
|
218 |
+
) -> torch.Tensor:
|
219 |
+
num_heads = 1 if self.single_head_ca else self.num_heads
|
220 |
+
x = self.norm_x_ca(x)
|
221 |
+
context = self.norm_ctx_ca(context)
|
222 |
+
k, v = rearrange(
|
223 |
+
self.kv_ca(context), "b n (kv h d) -> b h n d kv", h=num_heads, kv=2
|
224 |
+
).unbind(dim=-1)
|
225 |
+
q = rearrange(self.q_ca(x), "b n (h d) -> b h n d", h=num_heads)
|
226 |
+
|
227 |
+
if rope is not None:
|
228 |
+
q = rope(q)
|
229 |
+
k = rope(k)
|
230 |
+
else:
|
231 |
+
if pos_embed is not None:
|
232 |
+
pos_embed = rearrange(pos_embed, "b n (h d) -> b h n d", h=num_heads)
|
233 |
+
q = q + pos_embed
|
234 |
+
if pos_embed_context is not None:
|
235 |
+
pos_embed_context = rearrange(
|
236 |
+
pos_embed_context, "b n (h d) -> b h n d", h=num_heads
|
237 |
+
)
|
238 |
+
k = k + pos_embed_context
|
239 |
+
|
240 |
+
if self.cosine:
|
241 |
+
q, k = map(partial(F.normalize, p=2, dim=-1), (q, k)) # cosine sim
|
242 |
+
x = F.scaled_dot_product_attention(
|
243 |
+
q, k, v, dropout_p=self.dropout, attn_mask=attn_bias
|
244 |
+
)
|
245 |
+
x = rearrange(x, "b h n d -> b n (h d)")
|
246 |
+
x = self.out_ca(x)
|
247 |
+
return x
|
248 |
+
|
249 |
+
def self_attn(
|
250 |
+
self,
|
251 |
+
x: torch.Tensor,
|
252 |
+
attn_bias: torch.Tensor | None = None,
|
253 |
+
pos_embed: torch.Tensor | None = None,
|
254 |
+
rope: nn.Module | None = None,
|
255 |
+
) -> torch.Tensor:
|
256 |
+
x = self.norm_x_sa(x)
|
257 |
+
k, v = rearrange(
|
258 |
+
self.kv_sa(x), "b n (kv h d) -> b h n d kv", h=self.num_heads, kv=2
|
259 |
+
).unbind(dim=-1)
|
260 |
+
q = rearrange(self.q_sa(x), "b n (h d) -> b h n d", h=self.num_heads)
|
261 |
+
|
262 |
+
if rope is not None:
|
263 |
+
q = rope(q)
|
264 |
+
k = rope(k)
|
265 |
+
elif pos_embed is not None:
|
266 |
+
pos_embed = rearrange(pos_embed, "b n (h d) -> b h n d", h=self.num_heads)
|
267 |
+
q = q + pos_embed
|
268 |
+
|
269 |
+
if self.cosine:
|
270 |
+
q, k = map(partial(F.normalize, p=2, dim=-1), (q, k)) # cosine sim
|
271 |
+
x = F.scaled_dot_product_attention(
|
272 |
+
q, k, v, dropout_p=self.dropout, attn_mask=attn_bias
|
273 |
+
)
|
274 |
+
x = rearrange(x, "b h n d -> b n (h d)")
|
275 |
+
x = self.out_sa(x)
|
276 |
+
return x
|
277 |
+
|
278 |
+
def forward(
|
279 |
+
self,
|
280 |
+
x: torch.Tensor,
|
281 |
+
attn_bias: torch.Tensor | None = None,
|
282 |
+
context: torch.Tensor | None = None,
|
283 |
+
pos_embed: torch.Tensor | None = None,
|
284 |
+
pos_embed_context: torch.Tensor | None = None,
|
285 |
+
rope: nn.Module | None = None,
|
286 |
+
) -> torch.Tensor:
|
287 |
+
context = x if context is None else context
|
288 |
+
x = (
|
289 |
+
self.ls1(
|
290 |
+
self.cross_attn(
|
291 |
+
x,
|
292 |
+
rope=rope,
|
293 |
+
attn_bias=attn_bias,
|
294 |
+
context=context,
|
295 |
+
pos_embed=pos_embed,
|
296 |
+
pos_embed_context=pos_embed_context,
|
297 |
+
)
|
298 |
+
)
|
299 |
+
+ x
|
300 |
+
)
|
301 |
+
x = (
|
302 |
+
self.ls2(
|
303 |
+
self.self_attn(x, rope=rope, attn_bias=attn_bias, pos_embed=pos_embed)
|
304 |
+
)
|
305 |
+
+ x
|
306 |
+
)
|
307 |
+
x = self.ls3(self.mlp(x)) + x
|
308 |
+
return x
|
flash3d/unidepth/layers/convnext.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class CvnxtBlock(nn.Module):
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
dim,
|
9 |
+
kernel_size=7,
|
10 |
+
layer_scale=1.0,
|
11 |
+
expansion=4,
|
12 |
+
dilation=1,
|
13 |
+
):
|
14 |
+
super().__init__()
|
15 |
+
self.dwconv = nn.Conv2d(
|
16 |
+
dim,
|
17 |
+
dim,
|
18 |
+
kernel_size=kernel_size,
|
19 |
+
padding="same",
|
20 |
+
groups=dim,
|
21 |
+
dilation=dilation,
|
22 |
+
) # depthwise conv
|
23 |
+
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
24 |
+
self.pwconv1 = nn.Linear(
|
25 |
+
dim, expansion * dim
|
26 |
+
) # pointwise/1x1 convs, implemented with linear layers
|
27 |
+
self.act = nn.GELU()
|
28 |
+
self.pwconv2 = nn.Linear(expansion * dim, dim)
|
29 |
+
self.gamma = (
|
30 |
+
nn.Parameter(layer_scale * torch.ones((dim))) if layer_scale > 0.0 else 1.0
|
31 |
+
)
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
input = x
|
35 |
+
x = self.dwconv(x)
|
36 |
+
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
37 |
+
x = self.norm(x)
|
38 |
+
x = self.pwconv1(x)
|
39 |
+
x = self.act(x)
|
40 |
+
x = self.pwconv2(x)
|
41 |
+
|
42 |
+
x = self.gamma * x
|
43 |
+
x = input + x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
44 |
+
return x
|
flash3d/unidepth/layers/drop_path.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
def drop_path(x: torch.Tensor, drop_prob: float = 0.0, training: bool = False):
|
6 |
+
if drop_prob == 0.0 or not training:
|
7 |
+
return x
|
8 |
+
keep_prob = 1 - drop_prob
|
9 |
+
shape = (x.shape[0],) + (1,) * (
|
10 |
+
x.ndim - 1
|
11 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
12 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
13 |
+
if keep_prob > 0.0:
|
14 |
+
random_tensor.div_(keep_prob)
|
15 |
+
output = x * random_tensor
|
16 |
+
return output
|
17 |
+
|
18 |
+
|
19 |
+
class DropPath(nn.Module):
|
20 |
+
def __init__(self, drop_prob=None):
|
21 |
+
super(DropPath, self).__init__()
|
22 |
+
self.drop_prob = drop_prob
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
return drop_path(x, self.drop_prob, self.training)
|
flash3d/unidepth/layers/layer_scale.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
|
5 |
+
class LayerScale(nn.Module):
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
dim: int,
|
9 |
+
init_values: float | torch.Tensor = 1e-5,
|
10 |
+
inplace: bool = False,
|
11 |
+
) -> None:
|
12 |
+
super().__init__()
|
13 |
+
self.inplace = inplace
|
14 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
15 |
+
|
16 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
17 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
flash3d/unidepth/layers/mlp.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from unidepth.utils.misc import default
|
5 |
+
from .activation import SwiGLU
|
6 |
+
|
7 |
+
|
8 |
+
class MLP(nn.Module):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
input_dim: int,
|
12 |
+
expansion: int = 4,
|
13 |
+
dropout: float = 0.0,
|
14 |
+
gated: bool = False,
|
15 |
+
output_dim: int | None = None,
|
16 |
+
):
|
17 |
+
super().__init__()
|
18 |
+
if gated:
|
19 |
+
expansion = int(expansion * 2 / 3)
|
20 |
+
hidden_dim = int(input_dim * expansion)
|
21 |
+
output_dim = default(output_dim, input_dim)
|
22 |
+
self.norm = nn.LayerNorm(input_dim)
|
23 |
+
self.proj1 = nn.Linear(input_dim, hidden_dim)
|
24 |
+
self.proj2 = nn.Linear(hidden_dim, output_dim)
|
25 |
+
self.act = nn.GELU() if not gated else SwiGLU()
|
26 |
+
self.dropout = nn.Dropout(dropout) if dropout > 0.0 else nn.Identity()
|
27 |
+
|
28 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
29 |
+
x = self.norm(x)
|
30 |
+
x = self.proj1(x)
|
31 |
+
x = self.act(x)
|
32 |
+
x = self.proj2(x)
|
33 |
+
x = self.dropout(x)
|
34 |
+
return x
|
flash3d/unidepth/layers/nystrom_attention.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from einops import rearrange
|
7 |
+
from xformers.components.attention import NystromAttention
|
8 |
+
|
9 |
+
from .attention import AttentionBlock
|
10 |
+
|
11 |
+
|
12 |
+
class NystromBlock(AttentionBlock):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
dim: int,
|
16 |
+
num_heads: int = 4,
|
17 |
+
expansion: int = 4,
|
18 |
+
dropout: float = 0.0,
|
19 |
+
cosine: bool = False,
|
20 |
+
gated: bool = False,
|
21 |
+
layer_scale: float = 1.0,
|
22 |
+
context_dim: int | None = None,
|
23 |
+
):
|
24 |
+
super().__init__(
|
25 |
+
dim=dim,
|
26 |
+
num_heads=num_heads,
|
27 |
+
expansion=expansion,
|
28 |
+
dropout=dropout,
|
29 |
+
cosine=cosine,
|
30 |
+
gated=gated,
|
31 |
+
layer_scale=layer_scale,
|
32 |
+
context_dim=context_dim,
|
33 |
+
)
|
34 |
+
self.attention_fn = NystromAttention(
|
35 |
+
num_landmarks=128, num_heads=num_heads, dropout=dropout
|
36 |
+
)
|
37 |
+
|
38 |
+
def attn(
|
39 |
+
self,
|
40 |
+
x: torch.Tensor,
|
41 |
+
attn_bias: torch.Tensor | None = None,
|
42 |
+
context: torch.Tensor | None = None,
|
43 |
+
pos_embed: torch.Tensor | None = None,
|
44 |
+
pos_embed_context: torch.Tensor | None = None,
|
45 |
+
rope: nn.Module | None = None,
|
46 |
+
) -> torch.Tensor:
|
47 |
+
x = self.norm_attnx(x)
|
48 |
+
context = self.norm_attnctx(context)
|
49 |
+
k, v = rearrange(
|
50 |
+
self.kv(context), "b n (kv h d) -> b n h d kv", h=self.num_heads, kv=2
|
51 |
+
).unbind(dim=-1)
|
52 |
+
q = rearrange(self.q(x), "b n (h d) -> b n h d", h=self.num_heads)
|
53 |
+
|
54 |
+
if rope is not None:
|
55 |
+
q = rope(q)
|
56 |
+
k = rope(k)
|
57 |
+
else:
|
58 |
+
if pos_embed is not None:
|
59 |
+
pos_embed = rearrange(
|
60 |
+
pos_embed, "b n (h d) -> b n h d", h=self.num_heads
|
61 |
+
)
|
62 |
+
q = q + pos_embed
|
63 |
+
if pos_embed_context is not None:
|
64 |
+
pos_embed_context = rearrange(
|
65 |
+
pos_embed_context, "b n (h d) -> b n h d", h=self.num_heads
|
66 |
+
)
|
67 |
+
k = k + pos_embed_context
|
68 |
+
|
69 |
+
if self.cosine:
|
70 |
+
q, k = map(partial(F.normalize, p=2, dim=-1), (q, k)) # cosine sim
|
71 |
+
x = self.attention_fn(q, k, v, key_padding_mask=attn_bias)
|
72 |
+
x = rearrange(x, "b n h d -> b n (h d)")
|
73 |
+
x = self.out(x)
|
74 |
+
return x
|
flash3d/unidepth/layers/positional_encoding.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Luigi Piccinelli
|
3 |
+
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
|
4 |
+
"""
|
5 |
+
|
6 |
+
from math import pi
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
|
12 |
+
from einops import rearrange, repeat
|
13 |
+
|
14 |
+
|
15 |
+
class PositionEmbeddingSine(nn.Module):
|
16 |
+
def __init__(
|
17 |
+
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None
|
18 |
+
):
|
19 |
+
super().__init__()
|
20 |
+
self.num_pos_feats = num_pos_feats
|
21 |
+
self.temperature = temperature
|
22 |
+
self.normalize = normalize
|
23 |
+
if scale is not None and normalize is False:
|
24 |
+
raise ValueError("normalize should be True if scale is passed")
|
25 |
+
if scale is None:
|
26 |
+
scale = 2 * pi
|
27 |
+
self.scale = scale
|
28 |
+
|
29 |
+
def forward(
|
30 |
+
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
|
31 |
+
) -> torch.Tensor:
|
32 |
+
if mask is None:
|
33 |
+
mask = torch.zeros(
|
34 |
+
(x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool
|
35 |
+
)
|
36 |
+
not_mask = ~mask
|
37 |
+
y_embed = not_mask.cumsum(1, dtype=torch.float32)
|
38 |
+
x_embed = not_mask.cumsum(2, dtype=torch.float32)
|
39 |
+
if self.normalize:
|
40 |
+
eps = 1e-6
|
41 |
+
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
42 |
+
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
43 |
+
|
44 |
+
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
45 |
+
dim_t = self.temperature ** (
|
46 |
+
2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats
|
47 |
+
)
|
48 |
+
|
49 |
+
pos_x = x_embed[:, :, :, None] / dim_t
|
50 |
+
pos_y = y_embed[:, :, :, None] / dim_t
|
51 |
+
pos_x = torch.stack(
|
52 |
+
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
53 |
+
).flatten(3)
|
54 |
+
pos_y = torch.stack(
|
55 |
+
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
56 |
+
).flatten(3)
|
57 |
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
58 |
+
return pos
|
59 |
+
|
60 |
+
def __repr__(self, _repr_indent=4):
|
61 |
+
head = "Positional encoding " + self.__class__.__name__
|
62 |
+
body = [
|
63 |
+
"num_pos_feats: {}".format(self.num_pos_feats),
|
64 |
+
"temperature: {}".format(self.temperature),
|
65 |
+
"normalize: {}".format(self.normalize),
|
66 |
+
"scale: {}".format(self.scale),
|
67 |
+
]
|
68 |
+
# _repr_indent = 4
|
69 |
+
lines = [head] + [" " * _repr_indent + line for line in body]
|
70 |
+
return "\n".join(lines)
|
71 |
+
|
72 |
+
|
73 |
+
class LearnedSinusoidalPosEmb(nn.Module):
|
74 |
+
def __init__(self, dim):
|
75 |
+
super().__init__()
|
76 |
+
assert (dim % 2) == 0
|
77 |
+
half_dim = dim // 2
|
78 |
+
self.weights = nn.Parameter(torch.randn(half_dim))
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
x = rearrange(x, "b -> b 1")
|
82 |
+
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
|
83 |
+
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
|
84 |
+
fouriered = torch.cat((x, fouriered), dim=-1)
|
85 |
+
return fouriered
|
86 |
+
|
87 |
+
|
88 |
+
def generate_fourier_features(x, max_freq=64, num_bands=16):
|
89 |
+
x = x.unsqueeze(-1)
|
90 |
+
device, dtype, orig_x = x.device, x.dtype, x
|
91 |
+
|
92 |
+
scales = torch.linspace(
|
93 |
+
-max_freq / 2, max_freq / 2, num_bands, device=device, dtype=dtype
|
94 |
+
)
|
95 |
+
scales = scales[(*((None,) * (len(x.shape) - 1)), Ellipsis)]
|
96 |
+
|
97 |
+
x = x * scales * pi
|
98 |
+
x = torch.cat([x.sin(), x.cos()], dim=-1)
|
99 |
+
x = torch.cat((x, orig_x), dim=-1)
|
100 |
+
return x.flatten(-2)
|
101 |
+
|
102 |
+
|
103 |
+
def broadcat(tensors, dim=-1):
|
104 |
+
num_tensors = len(tensors)
|
105 |
+
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
|
106 |
+
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions"
|
107 |
+
shape_len = list(shape_lens)[0]
|
108 |
+
dim = (dim + shape_len) if dim < 0 else dim
|
109 |
+
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
|
110 |
+
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
111 |
+
assert all(
|
112 |
+
[*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]
|
113 |
+
), "invalid dimensions for broadcastable concatentation"
|
114 |
+
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
|
115 |
+
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
|
116 |
+
expanded_dims.insert(dim, (dim, dims[dim]))
|
117 |
+
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
|
118 |
+
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
|
119 |
+
return torch.cat(tensors, dim=dim)
|
120 |
+
|
121 |
+
|
122 |
+
def rotate_half(x):
|
123 |
+
x = rearrange(x, "... (d r) -> ... d r", r=2)
|
124 |
+
x1, x2 = x.unbind(dim=-1)
|
125 |
+
x = torch.stack((-x2, x1), dim=-1)
|
126 |
+
return rearrange(x, "... d r -> ... (d r)")
|
127 |
+
|
128 |
+
|
129 |
+
class VisionRotaryEmbedding(nn.Module):
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
dim,
|
133 |
+
pt_seq_len,
|
134 |
+
ft_seq_len=None,
|
135 |
+
custom_freqs=None,
|
136 |
+
freqs_for="lang",
|
137 |
+
theta=10000,
|
138 |
+
max_freq=10,
|
139 |
+
num_freqs=1,
|
140 |
+
):
|
141 |
+
super().__init__()
|
142 |
+
if custom_freqs:
|
143 |
+
freqs = custom_freqs
|
144 |
+
elif freqs_for == "lang":
|
145 |
+
freqs = 1.0 / (
|
146 |
+
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
|
147 |
+
)
|
148 |
+
elif freqs_for == "pixel":
|
149 |
+
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi
|
150 |
+
elif freqs_for == "constant":
|
151 |
+
freqs = torch.ones(num_freqs).float()
|
152 |
+
else:
|
153 |
+
raise ValueError(f"unknown modality {freqs_for}")
|
154 |
+
|
155 |
+
if ft_seq_len is None:
|
156 |
+
ft_seq_len = pt_seq_len
|
157 |
+
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
158 |
+
|
159 |
+
freqs_h = torch.einsum("..., f -> ... f", t, freqs)
|
160 |
+
freqs_h = repeat(freqs_h, "... n -> ... (n r)", r=2)
|
161 |
+
|
162 |
+
freqs_w = torch.einsum("..., f -> ... f", t, freqs)
|
163 |
+
freqs_w = repeat(freqs_w, "... n -> ... (n r)", r=2)
|
164 |
+
|
165 |
+
freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1)
|
166 |
+
|
167 |
+
self.register_buffer("freqs_cos", freqs.cos())
|
168 |
+
self.register_buffer("freqs_sin", freqs.sin())
|
169 |
+
|
170 |
+
print("======== shape of rope freq", self.freqs_cos.shape, "========")
|
171 |
+
|
172 |
+
def forward(self, t, start_index=0):
|
173 |
+
rot_dim = self.freqs_cos.shape[-1]
|
174 |
+
end_index = start_index + rot_dim
|
175 |
+
assert (
|
176 |
+
rot_dim <= t.shape[-1]
|
177 |
+
), f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}"
|
178 |
+
t_left, t, t_right = (
|
179 |
+
t[..., :start_index],
|
180 |
+
t[..., start_index:end_index],
|
181 |
+
t[..., end_index:],
|
182 |
+
)
|
183 |
+
t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
|
184 |
+
return torch.cat((t_left, t, t_right), dim=-1)
|
185 |
+
|
186 |
+
|
187 |
+
class VisionRotaryEmbeddingFast(nn.Module):
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
dim,
|
191 |
+
pt_seq_len,
|
192 |
+
ft_seq_len=None,
|
193 |
+
custom_freqs=None,
|
194 |
+
freqs_for="lang",
|
195 |
+
theta=10000,
|
196 |
+
max_freq=10,
|
197 |
+
num_freqs=1,
|
198 |
+
):
|
199 |
+
super().__init__()
|
200 |
+
if custom_freqs:
|
201 |
+
freqs = custom_freqs
|
202 |
+
elif freqs_for == "lang":
|
203 |
+
freqs = 1.0 / (
|
204 |
+
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
|
205 |
+
)
|
206 |
+
elif freqs_for == "pixel":
|
207 |
+
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi
|
208 |
+
elif freqs_for == "constant":
|
209 |
+
freqs = torch.ones(num_freqs).float()
|
210 |
+
else:
|
211 |
+
raise ValueError(f"unknown modality {freqs_for}")
|
212 |
+
|
213 |
+
if ft_seq_len is None:
|
214 |
+
ft_seq_len = pt_seq_len
|
215 |
+
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
216 |
+
|
217 |
+
freqs = torch.einsum("..., f -> ... f", t, freqs)
|
218 |
+
freqs = repeat(freqs, "... n -> ... (n r)", r=2)
|
219 |
+
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim=-1)
|
220 |
+
|
221 |
+
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
|
222 |
+
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
|
223 |
+
|
224 |
+
self.register_buffer("freqs_cos", freqs_cos)
|
225 |
+
self.register_buffer("freqs_sin", freqs_sin)
|
226 |
+
|
227 |
+
def forward(self, t):
|
228 |
+
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
|
flash3d/unidepth/layers/upsample.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Luigi Piccinelli
|
3 |
+
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from einops import rearrange
|
9 |
+
|
10 |
+
from .convnext import CvnxtBlock
|
11 |
+
|
12 |
+
|
13 |
+
class ConvUpsample(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
hidden_dim,
|
17 |
+
num_layers: int = 2,
|
18 |
+
expansion: int = 4,
|
19 |
+
layer_scale: float = 1.0,
|
20 |
+
kernel_size: int = 7,
|
21 |
+
**kwargs
|
22 |
+
):
|
23 |
+
super().__init__()
|
24 |
+
self.convs = nn.ModuleList([])
|
25 |
+
for _ in range(num_layers):
|
26 |
+
self.convs.append(
|
27 |
+
CvnxtBlock(
|
28 |
+
hidden_dim,
|
29 |
+
kernel_size=kernel_size,
|
30 |
+
expansion=expansion,
|
31 |
+
layer_scale=layer_scale,
|
32 |
+
)
|
33 |
+
)
|
34 |
+
self.up = nn.Sequential(
|
35 |
+
nn.Conv2d(hidden_dim, hidden_dim // 2, kernel_size=1, padding=0),
|
36 |
+
nn.UpsamplingBilinear2d(scale_factor=2),
|
37 |
+
nn.Conv2d(hidden_dim // 2, hidden_dim // 2, kernel_size=3, padding=1),
|
38 |
+
)
|
39 |
+
|
40 |
+
def forward(self, x: torch.Tensor):
|
41 |
+
for conv in self.convs:
|
42 |
+
x = conv(x)
|
43 |
+
x = self.up(x)
|
44 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class ConvUpsampleShuffle(nn.Module):
|
49 |
+
def __init__(
|
50 |
+
self, hidden_dim, expansion: int = 4, layer_scale: float = 1.0, **kwargs
|
51 |
+
):
|
52 |
+
super().__init__()
|
53 |
+
self.conv1 = CvnxtBlock(
|
54 |
+
hidden_dim, expansion=expansion, layer_scale=layer_scale
|
55 |
+
)
|
56 |
+
self.conv2 = CvnxtBlock(
|
57 |
+
hidden_dim, expansion=expansion, layer_scale=layer_scale
|
58 |
+
)
|
59 |
+
self.up = nn.Sequential(
|
60 |
+
nn.PixelShuffle(2),
|
61 |
+
nn.Conv2d(hidden_dim // 4, hidden_dim // 2, kernel_size=3, padding=1),
|
62 |
+
)
|
63 |
+
|
64 |
+
def forward(self, x: torch.Tensor):
|
65 |
+
x = self.conv1(x)
|
66 |
+
x = self.conv2(x)
|
67 |
+
x = self.up(x)
|
68 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
69 |
+
return x
|
flash3d/unidepth/models/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .unidepthv1 import UniDepthV1
|
2 |
+
|
3 |
+
__all__ = [
|
4 |
+
"UniDepthV1",
|
5 |
+
]
|
flash3d/unidepth/models/backbones/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .convnext2 import ConvNeXtV2
|
2 |
+
from .convnext import ConvNeXt
|
3 |
+
from .dinov2 import _make_dinov2_model
|
4 |
+
|
5 |
+
__all__ = [
|
6 |
+
"ConvNeXt",
|
7 |
+
"ConvNeXtV2",
|
8 |
+
"_make_dinov2_model",
|
9 |
+
]
|
flash3d/unidepth/models/backbones/convnext.py
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from functools import partial
|
3 |
+
from typing import Callable, Optional, Tuple, Union, Sequence
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torch.utils.checkpoint import checkpoint
|
8 |
+
|
9 |
+
from timm.layers import (
|
10 |
+
trunc_normal_,
|
11 |
+
AvgPool2dSame,
|
12 |
+
DropPath,
|
13 |
+
Mlp,
|
14 |
+
GlobalResponseNormMlp,
|
15 |
+
LayerNorm2d,
|
16 |
+
LayerNorm,
|
17 |
+
create_conv2d,
|
18 |
+
get_act_layer,
|
19 |
+
make_divisible,
|
20 |
+
to_ntuple,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
def get_num_layer_for_convnext(var_name):
|
25 |
+
"""
|
26 |
+
Divide [3, 3, 27, 3] layers into 12 groups; each group is three
|
27 |
+
consecutive blocks, including possible neighboring downsample layers;
|
28 |
+
adapted from https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py
|
29 |
+
"""
|
30 |
+
if var_name.startswith("downsample_layers"):
|
31 |
+
stage_id = int(var_name.split(".")[1])
|
32 |
+
if stage_id == 0:
|
33 |
+
layer_id = 0
|
34 |
+
elif stage_id == 1 or stage_id == 2:
|
35 |
+
layer_id = stage_id + 1
|
36 |
+
elif stage_id == 3:
|
37 |
+
layer_id = 12
|
38 |
+
|
39 |
+
elif var_name.startswith("stages"):
|
40 |
+
stage_id = int(var_name.split(".")[1])
|
41 |
+
block_id = int(var_name.split(".")[3])
|
42 |
+
if stage_id == 0 or stage_id == 1:
|
43 |
+
layer_id = stage_id + 1
|
44 |
+
elif stage_id == 2:
|
45 |
+
layer_id = 3 + block_id // 3
|
46 |
+
elif stage_id == 3:
|
47 |
+
layer_id = 12
|
48 |
+
|
49 |
+
elif var_name.startswith("stem"):
|
50 |
+
return 0
|
51 |
+
else:
|
52 |
+
layer_id = 12
|
53 |
+
return layer_id + 1
|
54 |
+
|
55 |
+
|
56 |
+
def get_parameter_groups(model, lr, wd=1e-5, ld=0.9, skip_list=None):
|
57 |
+
parameter_group_names = {}
|
58 |
+
parameter_group_vars = {}
|
59 |
+
skip = set()
|
60 |
+
if skip_list is not None:
|
61 |
+
skip = skip_list
|
62 |
+
if hasattr(model, "no_weight_decay"):
|
63 |
+
skip.update(model.no_weight_decay())
|
64 |
+
num_layers = 12
|
65 |
+
layer_scale = list(ld ** (num_layers + 1 - i) for i in range(num_layers + 2))
|
66 |
+
for name, param in model.named_parameters():
|
67 |
+
if not param.requires_grad:
|
68 |
+
continue # frozen weights
|
69 |
+
if len(param.shape) == 1 or name.endswith(".bias") or name in skip:
|
70 |
+
group_name = "no_decay"
|
71 |
+
this_wd = 0.0
|
72 |
+
else:
|
73 |
+
group_name = "decay"
|
74 |
+
this_wd = wd
|
75 |
+
|
76 |
+
layer_id = get_num_layer_for_convnext(name)
|
77 |
+
group_name = "layer_%d_%s" % (layer_id, group_name)
|
78 |
+
|
79 |
+
if group_name not in parameter_group_names:
|
80 |
+
scale = layer_scale[layer_id]
|
81 |
+
cur_lr = lr * scale
|
82 |
+
|
83 |
+
parameter_group_names[group_name] = {
|
84 |
+
"weight_decay": this_wd,
|
85 |
+
"weight_decay_init": this_wd,
|
86 |
+
"weight_decay_base": this_wd,
|
87 |
+
"params": [],
|
88 |
+
"lr_init": cur_lr,
|
89 |
+
"lr_base": lr,
|
90 |
+
"lr": cur_lr,
|
91 |
+
}
|
92 |
+
parameter_group_vars[group_name] = {
|
93 |
+
"weight_decay": this_wd,
|
94 |
+
"weight_decay_init": this_wd,
|
95 |
+
"weight_decay_base": this_wd,
|
96 |
+
"params": [],
|
97 |
+
"lr_init": cur_lr,
|
98 |
+
"lr_base": lr,
|
99 |
+
"lr": cur_lr,
|
100 |
+
}
|
101 |
+
if this_wd == 0.0:
|
102 |
+
parameter_group_names[group_name]["weight_decay_final"] = 0.0
|
103 |
+
parameter_group_vars[group_name]["weight_decay_final"] = 0.0
|
104 |
+
parameter_group_vars[group_name]["params"].append(param)
|
105 |
+
parameter_group_names[group_name]["params"].append(name)
|
106 |
+
# from unidepth.utils import is_main_process
|
107 |
+
# import json
|
108 |
+
# if is_main_process():
|
109 |
+
# print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
|
110 |
+
return list(parameter_group_vars.values()), [
|
111 |
+
v["lr"] for k, v in parameter_group_vars.items()
|
112 |
+
]
|
113 |
+
|
114 |
+
|
115 |
+
class Downsample(nn.Module):
|
116 |
+
def __init__(self, in_chs, out_chs, stride=1, dilation=1):
|
117 |
+
super().__init__()
|
118 |
+
avg_stride = stride if dilation == 1 else 1
|
119 |
+
if stride > 1 or dilation > 1:
|
120 |
+
avg_pool_fn = (
|
121 |
+
AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d
|
122 |
+
)
|
123 |
+
self.pool = avg_pool_fn(
|
124 |
+
2, avg_stride, ceil_mode=True, count_include_pad=False
|
125 |
+
)
|
126 |
+
else:
|
127 |
+
self.pool = nn.Identity()
|
128 |
+
|
129 |
+
if in_chs != out_chs:
|
130 |
+
self.conv = create_conv2d(in_chs, out_chs, 1, stride=1)
|
131 |
+
else:
|
132 |
+
self.conv = nn.Identity()
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
x = self.pool(x)
|
136 |
+
x = self.conv(x)
|
137 |
+
return x
|
138 |
+
|
139 |
+
|
140 |
+
class ConvNeXtBlock(nn.Module):
|
141 |
+
"""ConvNeXt Block
|
142 |
+
There are two equivalent implementations:
|
143 |
+
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
144 |
+
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
145 |
+
|
146 |
+
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate
|
147 |
+
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear
|
148 |
+
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW.
|
149 |
+
"""
|
150 |
+
|
151 |
+
def __init__(
|
152 |
+
self,
|
153 |
+
in_chs: int,
|
154 |
+
out_chs: Optional[int] = None,
|
155 |
+
kernel_size: int = 7,
|
156 |
+
stride: int = 1,
|
157 |
+
dilation: Union[int, Tuple[int, int]] = (1, 1),
|
158 |
+
mlp_ratio: float = 4,
|
159 |
+
conv_mlp: bool = False,
|
160 |
+
conv_bias: bool = True,
|
161 |
+
use_grn: bool = False,
|
162 |
+
ls_init_value: Optional[float] = 1e-6,
|
163 |
+
act_layer: Union[str, Callable] = "gelu",
|
164 |
+
norm_layer: Optional[Callable] = None,
|
165 |
+
drop_path: float = 0.0,
|
166 |
+
):
|
167 |
+
"""
|
168 |
+
|
169 |
+
Args:
|
170 |
+
in_chs: Block input channels.
|
171 |
+
out_chs: Block output channels (same as in_chs if None).
|
172 |
+
kernel_size: Depthwise convolution kernel size.
|
173 |
+
stride: Stride of depthwise convolution.
|
174 |
+
dilation: Tuple specifying input and output dilation of block.
|
175 |
+
mlp_ratio: MLP expansion ratio.
|
176 |
+
conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True.
|
177 |
+
conv_bias: Apply bias for all convolution (linear) layers.
|
178 |
+
use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2)
|
179 |
+
ls_init_value: Layer-scale init values, layer-scale applied if not None.
|
180 |
+
act_layer: Activation layer.
|
181 |
+
norm_layer: Normalization layer (defaults to LN if not specified).
|
182 |
+
drop_path: Stochastic depth probability.
|
183 |
+
"""
|
184 |
+
super().__init__()
|
185 |
+
out_chs = out_chs or in_chs
|
186 |
+
dilation = to_ntuple(2)(dilation)
|
187 |
+
act_layer = get_act_layer(act_layer)
|
188 |
+
if not norm_layer:
|
189 |
+
norm_layer = LayerNorm2d if conv_mlp else LayerNorm
|
190 |
+
mlp_layer = partial(
|
191 |
+
GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp
|
192 |
+
)
|
193 |
+
self.use_conv_mlp = conv_mlp
|
194 |
+
self.conv_dw = create_conv2d(
|
195 |
+
in_chs,
|
196 |
+
out_chs,
|
197 |
+
kernel_size=kernel_size,
|
198 |
+
stride=stride,
|
199 |
+
dilation=dilation[0],
|
200 |
+
depthwise=True,
|
201 |
+
bias=conv_bias,
|
202 |
+
)
|
203 |
+
self.norm = norm_layer(out_chs)
|
204 |
+
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer)
|
205 |
+
self.gamma = (
|
206 |
+
nn.Parameter(ls_init_value * torch.ones(out_chs))
|
207 |
+
if ls_init_value is not None
|
208 |
+
else None
|
209 |
+
)
|
210 |
+
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]:
|
211 |
+
self.shortcut = Downsample(
|
212 |
+
in_chs, out_chs, stride=stride, dilation=dilation[0]
|
213 |
+
)
|
214 |
+
else:
|
215 |
+
self.shortcut = nn.Identity()
|
216 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
217 |
+
|
218 |
+
def forward(self, x):
|
219 |
+
shortcut = x
|
220 |
+
x = self.conv_dw(x.contiguous())
|
221 |
+
if self.use_conv_mlp:
|
222 |
+
x = self.norm(x)
|
223 |
+
x = self.mlp(x)
|
224 |
+
else:
|
225 |
+
x = x.permute(0, 2, 3, 1).contiguous()
|
226 |
+
x = self.norm(x)
|
227 |
+
x = self.mlp(x)
|
228 |
+
x = x.permute(0, 3, 1, 2).contiguous()
|
229 |
+
if self.gamma is not None:
|
230 |
+
x = x.mul(self.gamma.reshape(1, -1, 1, 1))
|
231 |
+
|
232 |
+
x = self.drop_path(x) + self.shortcut(shortcut)
|
233 |
+
return x.contiguous()
|
234 |
+
|
235 |
+
|
236 |
+
class ConvNeXtStage(nn.Module):
|
237 |
+
def __init__(
|
238 |
+
self,
|
239 |
+
in_chs,
|
240 |
+
out_chs,
|
241 |
+
kernel_size=7,
|
242 |
+
stride=2,
|
243 |
+
depth=2,
|
244 |
+
dilation=(1, 1),
|
245 |
+
drop_path_rates=None,
|
246 |
+
ls_init_value=1.0,
|
247 |
+
conv_mlp=False,
|
248 |
+
conv_bias=True,
|
249 |
+
use_grn=False,
|
250 |
+
act_layer="gelu",
|
251 |
+
norm_layer=None,
|
252 |
+
norm_layer_cl=None,
|
253 |
+
):
|
254 |
+
super().__init__()
|
255 |
+
self.grad_checkpointing = False
|
256 |
+
|
257 |
+
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]:
|
258 |
+
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1
|
259 |
+
pad = (
|
260 |
+
"same" if dilation[1] > 1 else 0
|
261 |
+
) # same padding needed if dilation used
|
262 |
+
self.downsample = nn.Sequential(
|
263 |
+
norm_layer(in_chs),
|
264 |
+
create_conv2d(
|
265 |
+
in_chs,
|
266 |
+
out_chs,
|
267 |
+
kernel_size=ds_ks,
|
268 |
+
stride=stride,
|
269 |
+
dilation=dilation[0],
|
270 |
+
padding=pad,
|
271 |
+
bias=conv_bias,
|
272 |
+
),
|
273 |
+
)
|
274 |
+
in_chs = out_chs
|
275 |
+
else:
|
276 |
+
self.downsample = nn.Identity()
|
277 |
+
|
278 |
+
drop_path_rates = drop_path_rates or [0.0] * depth
|
279 |
+
stage_blocks = []
|
280 |
+
for i in range(depth):
|
281 |
+
stage_blocks.append(
|
282 |
+
ConvNeXtBlock(
|
283 |
+
in_chs=in_chs,
|
284 |
+
out_chs=out_chs,
|
285 |
+
kernel_size=kernel_size,
|
286 |
+
dilation=dilation[1],
|
287 |
+
drop_path=drop_path_rates[i],
|
288 |
+
ls_init_value=ls_init_value,
|
289 |
+
conv_mlp=conv_mlp,
|
290 |
+
conv_bias=conv_bias,
|
291 |
+
use_grn=use_grn,
|
292 |
+
act_layer=act_layer,
|
293 |
+
norm_layer=norm_layer if conv_mlp else norm_layer_cl,
|
294 |
+
)
|
295 |
+
)
|
296 |
+
in_chs = out_chs
|
297 |
+
self.blocks = nn.ModuleList(stage_blocks)
|
298 |
+
|
299 |
+
def forward(self, x):
|
300 |
+
xs = []
|
301 |
+
x = self.downsample(x)
|
302 |
+
for block in self.blocks:
|
303 |
+
if self.grad_checkpointing:
|
304 |
+
x = checkpoint(block, x)
|
305 |
+
else:
|
306 |
+
x = block(x)
|
307 |
+
xs.append(x)
|
308 |
+
return xs
|
309 |
+
|
310 |
+
|
311 |
+
class ConvNeXt(nn.Module):
|
312 |
+
def __init__(
|
313 |
+
self,
|
314 |
+
in_chans: int = 3,
|
315 |
+
output_stride: int = 32,
|
316 |
+
depths: Tuple[int, ...] = (3, 3, 9, 3),
|
317 |
+
dims: Tuple[int, ...] = (96, 192, 384, 768),
|
318 |
+
kernel_sizes: Union[int, Tuple[int, ...]] = 7,
|
319 |
+
ls_init_value: Optional[float] = 1e-6,
|
320 |
+
stem_type: str = "patch",
|
321 |
+
patch_size: int = 4,
|
322 |
+
conv_mlp: bool = False,
|
323 |
+
conv_bias: bool = True,
|
324 |
+
use_grn: bool = False,
|
325 |
+
act_layer: Union[str, Callable] = "gelu",
|
326 |
+
norm_layer: Optional[Union[str, Callable]] = None,
|
327 |
+
norm_eps: Optional[float] = None,
|
328 |
+
drop_path_rate: float = 0.0,
|
329 |
+
output_idx=[],
|
330 |
+
use_checkpoint=False,
|
331 |
+
):
|
332 |
+
"""
|
333 |
+
Args:
|
334 |
+
in_chans: Number of input image channels.
|
335 |
+
num_classes: Number of classes for classification head.
|
336 |
+
global_pool: Global pooling type.
|
337 |
+
output_stride: Output stride of network, one of (8, 16, 32).
|
338 |
+
depths: Number of blocks at each stage.
|
339 |
+
dims: Feature dimension at each stage.
|
340 |
+
kernel_sizes: Depthwise convolution kernel-sizes for each stage.
|
341 |
+
ls_init_value: Init value for Layer Scale, disabled if None.
|
342 |
+
stem_type: Type of stem.
|
343 |
+
patch_size: Stem patch size for patch stem.
|
344 |
+
head_init_scale: Init scaling value for classifier weights and biases.
|
345 |
+
head_norm_first: Apply normalization before global pool + head.
|
346 |
+
head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False.
|
347 |
+
conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last.
|
348 |
+
conv_bias: Use bias layers w/ all convolutions.
|
349 |
+
use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP.
|
350 |
+
act_layer: Activation layer type.
|
351 |
+
norm_layer: Normalization layer type.
|
352 |
+
drop_rate: Head pre-classifier dropout rate.
|
353 |
+
drop_path_rate: Stochastic depth drop rate.
|
354 |
+
"""
|
355 |
+
super().__init__()
|
356 |
+
self.num_layers = len(depths)
|
357 |
+
self.depths = output_idx
|
358 |
+
self.embed_dims = [
|
359 |
+
int(dim) for i, dim in enumerate(dims) for _ in range(depths[i])
|
360 |
+
]
|
361 |
+
self.embed_dim = dims[0]
|
362 |
+
|
363 |
+
assert output_stride in (8, 16, 32)
|
364 |
+
kernel_sizes = to_ntuple(4)(kernel_sizes)
|
365 |
+
if norm_layer is None:
|
366 |
+
norm_layer = LayerNorm2d
|
367 |
+
norm_layer_cl = norm_layer if conv_mlp else LayerNorm
|
368 |
+
if norm_eps is not None:
|
369 |
+
norm_layer = partial(norm_layer, eps=norm_eps)
|
370 |
+
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
|
371 |
+
else:
|
372 |
+
assert (
|
373 |
+
conv_mlp
|
374 |
+
), "If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input"
|
375 |
+
norm_layer_cl = norm_layer
|
376 |
+
if norm_eps is not None:
|
377 |
+
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps)
|
378 |
+
|
379 |
+
self.feature_info = []
|
380 |
+
|
381 |
+
assert stem_type in ("patch", "overlap", "overlap_tiered")
|
382 |
+
if stem_type == "patch":
|
383 |
+
# NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4
|
384 |
+
self.stem = nn.Sequential(
|
385 |
+
nn.Conv2d(
|
386 |
+
in_chans,
|
387 |
+
dims[0],
|
388 |
+
kernel_size=patch_size,
|
389 |
+
stride=patch_size,
|
390 |
+
bias=conv_bias,
|
391 |
+
),
|
392 |
+
norm_layer(dims[0]),
|
393 |
+
)
|
394 |
+
stem_stride = patch_size
|
395 |
+
else:
|
396 |
+
mid_chs = make_divisible(dims[0] // 2) if "tiered" in stem_type else dims[0]
|
397 |
+
self.stem = nn.Sequential(
|
398 |
+
nn.Conv2d(
|
399 |
+
in_chans,
|
400 |
+
mid_chs,
|
401 |
+
kernel_size=3,
|
402 |
+
stride=2,
|
403 |
+
padding=1,
|
404 |
+
bias=conv_bias,
|
405 |
+
),
|
406 |
+
nn.Conv2d(
|
407 |
+
mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias
|
408 |
+
),
|
409 |
+
norm_layer(dims[0]),
|
410 |
+
)
|
411 |
+
stem_stride = 4
|
412 |
+
|
413 |
+
self.stages = nn.Sequential()
|
414 |
+
dp_rates = [
|
415 |
+
x.tolist()
|
416 |
+
for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)
|
417 |
+
]
|
418 |
+
stages = []
|
419 |
+
prev_chs = dims[0]
|
420 |
+
curr_stride = stem_stride
|
421 |
+
dilation = 1
|
422 |
+
# 4 feature resolution stages, each consisting of multiple residual blocks
|
423 |
+
for i in range(4):
|
424 |
+
stride = 2 if curr_stride == 2 or i > 0 else 1
|
425 |
+
if curr_stride >= output_stride and stride > 1:
|
426 |
+
dilation *= stride
|
427 |
+
stride = 1
|
428 |
+
curr_stride *= stride
|
429 |
+
first_dilation = 1 if dilation in (1, 2) else 2
|
430 |
+
out_chs = dims[i]
|
431 |
+
stages.append(
|
432 |
+
ConvNeXtStage(
|
433 |
+
prev_chs,
|
434 |
+
out_chs,
|
435 |
+
kernel_size=kernel_sizes[i],
|
436 |
+
stride=stride,
|
437 |
+
dilation=(first_dilation, dilation),
|
438 |
+
depth=depths[i],
|
439 |
+
drop_path_rates=dp_rates[i],
|
440 |
+
ls_init_value=ls_init_value,
|
441 |
+
conv_mlp=conv_mlp,
|
442 |
+
conv_bias=conv_bias,
|
443 |
+
use_grn=use_grn,
|
444 |
+
act_layer=act_layer,
|
445 |
+
norm_layer=norm_layer,
|
446 |
+
norm_layer_cl=norm_layer_cl,
|
447 |
+
)
|
448 |
+
)
|
449 |
+
prev_chs = out_chs
|
450 |
+
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2
|
451 |
+
self.feature_info += [
|
452 |
+
dict(num_chs=prev_chs, reduction=curr_stride, module=f"stages.{i}")
|
453 |
+
]
|
454 |
+
self.stages = nn.ModuleList(stages)
|
455 |
+
self.mask_token = nn.Parameter(torch.zeros(1, self.embed_dim, 1, 1))
|
456 |
+
self.num_features = prev_chs
|
457 |
+
self.apply(self._init_weights)
|
458 |
+
self.set_grad_checkpointing(use_checkpoint)
|
459 |
+
|
460 |
+
def _init_weights(self, module):
|
461 |
+
if isinstance(module, nn.Conv2d):
|
462 |
+
trunc_normal_(module.weight, std=0.02)
|
463 |
+
if module.bias is not None:
|
464 |
+
nn.init.zeros_(module.bias)
|
465 |
+
elif isinstance(module, nn.Linear):
|
466 |
+
trunc_normal_(module.weight, std=0.02)
|
467 |
+
nn.init.zeros_(module.bias)
|
468 |
+
|
469 |
+
def forward(self, x, masks=None):
|
470 |
+
outs = []
|
471 |
+
x = self.stem(x)
|
472 |
+
if masks is not None:
|
473 |
+
masks = torch.nn.functional.interpolate(
|
474 |
+
masks.float(), size=x.shape[-2:], mode="nearest"
|
475 |
+
)
|
476 |
+
x = torch.where(masks.bool(), self.mask_token.to(x.dtype), x).contiguous()
|
477 |
+
for stage in self.stages:
|
478 |
+
xs = stage(x)
|
479 |
+
outs.extend([x.permute(0, 2, 3, 1).contiguous() for x in xs])
|
480 |
+
x = xs[-1]
|
481 |
+
return outs, [x.mean(dim=(1, 2)).unsqueeze(1).contiguous() for x in outs]
|
482 |
+
|
483 |
+
@torch.jit.ignore
|
484 |
+
def group_matcher(self, coarse=False):
|
485 |
+
return dict(
|
486 |
+
stem=r"^stem",
|
487 |
+
blocks=(
|
488 |
+
r"^stages\.(\d+)"
|
489 |
+
if coarse
|
490 |
+
else [
|
491 |
+
(r"^stages\.(\d+)\.downsample", (0,)), # blocks
|
492 |
+
(r"^stages\.(\d+)\.blocks\.(\d+)", None),
|
493 |
+
(r"^norm_pre", (99999,)),
|
494 |
+
]
|
495 |
+
),
|
496 |
+
)
|
497 |
+
|
498 |
+
@torch.jit.ignore
|
499 |
+
def set_grad_checkpointing(self, enable=True):
|
500 |
+
for s in self.stages:
|
501 |
+
s.grad_checkpointing = enable
|
502 |
+
|
503 |
+
def freeze(self) -> None:
|
504 |
+
for module in self.modules():
|
505 |
+
module.eval()
|
506 |
+
for parameters in self.parameters():
|
507 |
+
parameters.requires_grad = False
|
508 |
+
|
509 |
+
def get_params(self, lr, wd, ld, *args, **kwargs):
|
510 |
+
encoder_p, encoder_lr = get_parameter_groups(self, lr, wd, ld)
|
511 |
+
return encoder_p, encoder_lr
|
512 |
+
|
513 |
+
def no_weight_decay(self):
|
514 |
+
return {"mask_token"}
|
515 |
+
|
516 |
+
@classmethod
|
517 |
+
def build(cls, config):
|
518 |
+
obj = globals()[config["model"]["encoder"]["name"]](config)
|
519 |
+
return obj
|
520 |
+
|
521 |
+
|
522 |
+
def checkpoint_filter_fn(state_dict, model):
|
523 |
+
"""Remap FB checkpoints -> timm"""
|
524 |
+
if "head.norm.weight" in state_dict or "norm_pre.weight" in state_dict:
|
525 |
+
return state_dict # non-FB checkpoint
|
526 |
+
if "model" in state_dict:
|
527 |
+
state_dict = state_dict["model"]
|
528 |
+
|
529 |
+
out_dict = {}
|
530 |
+
if "visual.trunk.stem.0.weight" in state_dict:
|
531 |
+
out_dict = {
|
532 |
+
k.replace("visual.trunk.", ""): v
|
533 |
+
for k, v in state_dict.items()
|
534 |
+
if k.startswith("visual.trunk.")
|
535 |
+
}
|
536 |
+
if "visual.head.proj.weight" in state_dict:
|
537 |
+
out_dict["head.fc.weight"] = state_dict["visual.head.proj.weight"]
|
538 |
+
out_dict["head.fc.bias"] = torch.zeros(
|
539 |
+
state_dict["visual.head.proj.weight"].shape[0]
|
540 |
+
)
|
541 |
+
elif "visual.head.mlp.fc1.weight" in state_dict:
|
542 |
+
out_dict["head.pre_logits.fc.weight"] = state_dict[
|
543 |
+
"visual.head.mlp.fc1.weight"
|
544 |
+
]
|
545 |
+
out_dict["head.pre_logits.fc.bias"] = state_dict["visual.head.mlp.fc1.bias"]
|
546 |
+
out_dict["head.fc.weight"] = state_dict["visual.head.mlp.fc2.weight"]
|
547 |
+
out_dict["head.fc.bias"] = torch.zeros(
|
548 |
+
state_dict["visual.head.mlp.fc2.weight"].shape[0]
|
549 |
+
)
|
550 |
+
return out_dict
|
551 |
+
|
552 |
+
import re
|
553 |
+
|
554 |
+
for k, v in state_dict.items():
|
555 |
+
k = k.replace("downsample_layers.0.", "stem.")
|
556 |
+
k = re.sub(r"stages.([0-9]+).([0-9]+)", r"stages.\1.blocks.\2", k)
|
557 |
+
k = re.sub(
|
558 |
+
r"downsample_layers.([0-9]+).([0-9]+)", r"stages.\1.downsample.\2", k
|
559 |
+
)
|
560 |
+
k = k.replace("dwconv", "conv_dw")
|
561 |
+
k = k.replace("pwconv", "mlp.fc")
|
562 |
+
if "grn" in k:
|
563 |
+
k = k.replace("grn.beta", "mlp.grn.bias")
|
564 |
+
k = k.replace("grn.gamma", "mlp.grn.weight")
|
565 |
+
v = v.reshape(v.shape[-1])
|
566 |
+
k = k.replace("head.", "head.fc.")
|
567 |
+
if k.startswith("norm."):
|
568 |
+
k = k.replace("norm", "head.norm")
|
569 |
+
if v.ndim == 2 and "head" not in k:
|
570 |
+
model_shape = model.state_dict()[k].shape
|
571 |
+
v = v.reshape(model_shape)
|
572 |
+
out_dict[k] = v
|
573 |
+
|
574 |
+
return out_dict
|
575 |
+
|
576 |
+
|
577 |
+
HF_URL = {
|
578 |
+
"convnext_xxlarge_pt": (
|
579 |
+
"laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup",
|
580 |
+
"open_clip_pytorch_model.bin",
|
581 |
+
),
|
582 |
+
"convnext_large_pt": (
|
583 |
+
"laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup",
|
584 |
+
"open_clip_pytorch_model.bin",
|
585 |
+
),
|
586 |
+
"convnext_large": (
|
587 |
+
"timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384",
|
588 |
+
"pytorch_model.bin",
|
589 |
+
),
|
590 |
+
}
|
flash3d/unidepth/models/backbones/convnext2.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from timm.models.layers import trunc_normal_, DropPath
|
5 |
+
|
6 |
+
|
7 |
+
def get_num_layer_for_convnext_single(var_name, depths):
|
8 |
+
"""
|
9 |
+
Each layer is assigned distinctive layer ids
|
10 |
+
"""
|
11 |
+
if var_name.startswith("downsample_layers"):
|
12 |
+
stage_id = int(var_name.split(".")[1])
|
13 |
+
layer_id = sum(depths[:stage_id]) + 1
|
14 |
+
return layer_id
|
15 |
+
|
16 |
+
elif var_name.startswith("stages"):
|
17 |
+
stage_id = int(var_name.split(".")[1])
|
18 |
+
block_id = int(var_name.split(".")[2])
|
19 |
+
layer_id = sum(depths[:stage_id]) + block_id + 1
|
20 |
+
return layer_id
|
21 |
+
|
22 |
+
else:
|
23 |
+
return sum(depths) + 1
|
24 |
+
|
25 |
+
|
26 |
+
def get_num_layer_for_convnext(var_name):
|
27 |
+
"""
|
28 |
+
Divide [3, 3, 27, 3] layers into 12 groups; each group is three
|
29 |
+
consecutive blocks, including possible neighboring downsample layers;
|
30 |
+
adapted from https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py
|
31 |
+
"""
|
32 |
+
num_max_layer = 12
|
33 |
+
if var_name.startswith("downsample_layers"):
|
34 |
+
stage_id = int(var_name.split(".")[1])
|
35 |
+
if stage_id == 0:
|
36 |
+
layer_id = 0
|
37 |
+
elif stage_id == 1 or stage_id == 2:
|
38 |
+
layer_id = stage_id + 1
|
39 |
+
elif stage_id == 3:
|
40 |
+
layer_id = 12
|
41 |
+
return layer_id
|
42 |
+
|
43 |
+
elif var_name.startswith("stages"):
|
44 |
+
stage_id = int(var_name.split(".")[1])
|
45 |
+
block_id = int(var_name.split(".")[2])
|
46 |
+
if stage_id == 0 or stage_id == 1:
|
47 |
+
layer_id = stage_id + 1
|
48 |
+
elif stage_id == 2:
|
49 |
+
layer_id = 3 + block_id // 3
|
50 |
+
elif stage_id == 3:
|
51 |
+
layer_id = 12
|
52 |
+
return layer_id
|
53 |
+
else:
|
54 |
+
return num_max_layer + 1
|
55 |
+
|
56 |
+
|
57 |
+
def get_parameter_groups(model, lr, wd=1e-5, ld=0.9, skip_list=()):
|
58 |
+
parameter_group_names = {}
|
59 |
+
parameter_group_vars = {}
|
60 |
+
skip = {}
|
61 |
+
if skip_list is not None:
|
62 |
+
skip = skip_list
|
63 |
+
elif hasattr(model, "no_weight_decay"):
|
64 |
+
skip = model.no_weight_decay()
|
65 |
+
num_layers = 12 # sum(model.depths)
|
66 |
+
layer_scale = list(ld ** (num_layers + 1 - i) for i in range(num_layers + 2))
|
67 |
+
for name, param in model.named_parameters():
|
68 |
+
if not param.requires_grad:
|
69 |
+
continue # frozen weights
|
70 |
+
if (
|
71 |
+
len(param.shape) == 1
|
72 |
+
or name.endswith(".bias")
|
73 |
+
or name in skip
|
74 |
+
or name.endswith(".gamma")
|
75 |
+
or name.endswith(".beta")
|
76 |
+
):
|
77 |
+
group_name = "no_decay"
|
78 |
+
this_weight_decay = 0.0
|
79 |
+
else:
|
80 |
+
group_name = "decay"
|
81 |
+
this_weight_decay = wd
|
82 |
+
|
83 |
+
# layer_id = get_num_layer_for_convnext_single(name, model.depths)
|
84 |
+
layer_id = get_num_layer_for_convnext(name)
|
85 |
+
group_name = "layer_%d_%s" % (layer_id, group_name)
|
86 |
+
|
87 |
+
if group_name not in parameter_group_names:
|
88 |
+
scale = layer_scale[layer_id]
|
89 |
+
cur_lr = lr * scale
|
90 |
+
|
91 |
+
parameter_group_names[group_name] = {
|
92 |
+
"weight_decay": this_weight_decay,
|
93 |
+
"params": [],
|
94 |
+
"lr_scale": scale,
|
95 |
+
"lr": cur_lr,
|
96 |
+
}
|
97 |
+
parameter_group_vars[group_name] = {
|
98 |
+
"weight_decay": this_weight_decay,
|
99 |
+
"params": [],
|
100 |
+
"lr_scale": scale,
|
101 |
+
"lr": cur_lr,
|
102 |
+
}
|
103 |
+
parameter_group_vars[group_name]["params"].append(param)
|
104 |
+
parameter_group_names[group_name]["params"].append(name)
|
105 |
+
# if is_main_process():
|
106 |
+
# print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
|
107 |
+
return list(parameter_group_vars.values()), [
|
108 |
+
v["lr"] for k, v in parameter_group_vars.items()
|
109 |
+
]
|
110 |
+
|
111 |
+
|
112 |
+
class LayerNorm(nn.Module):
|
113 |
+
"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
114 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
|
115 |
+
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
|
116 |
+
with shape (batch_size, channels, height, width).
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
120 |
+
super().__init__()
|
121 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
122 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
123 |
+
self.eps = eps
|
124 |
+
self.data_format = data_format
|
125 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
126 |
+
raise NotImplementedError
|
127 |
+
self.normalized_shape = (normalized_shape,)
|
128 |
+
|
129 |
+
def forward(self, x):
|
130 |
+
if self.data_format == "channels_last":
|
131 |
+
return F.layer_norm(
|
132 |
+
x, self.normalized_shape, self.weight, self.bias, self.eps
|
133 |
+
)
|
134 |
+
elif self.data_format == "channels_first":
|
135 |
+
u = x.mean(1, keepdim=True)
|
136 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
137 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
138 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
139 |
+
return x
|
140 |
+
|
141 |
+
|
142 |
+
class GRN(nn.Module):
|
143 |
+
"""GRN (Global Response Normalization) layer"""
|
144 |
+
|
145 |
+
def __init__(self, dim):
|
146 |
+
super().__init__()
|
147 |
+
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
|
148 |
+
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
|
149 |
+
|
150 |
+
def forward(self, x):
|
151 |
+
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
|
152 |
+
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
153 |
+
return self.gamma * (x * Nx) + self.beta + x
|
154 |
+
|
155 |
+
|
156 |
+
class Block(nn.Module):
|
157 |
+
"""ConvNeXtV2 Block.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
dim (int): Number of input channels.
|
161 |
+
drop_path (float): Stochastic depth rate. Default: 0.0
|
162 |
+
"""
|
163 |
+
|
164 |
+
def __init__(self, dim, drop_path=0.0, mult=4, use_checkpoint=False):
|
165 |
+
super().__init__()
|
166 |
+
self.dwconv = nn.Conv2d(
|
167 |
+
dim, dim, kernel_size=7, padding=3, groups=dim
|
168 |
+
) # depthwise conv
|
169 |
+
self.norm = LayerNorm(dim, eps=1e-6)
|
170 |
+
self.pwconv1 = nn.Linear(
|
171 |
+
dim, mult * dim
|
172 |
+
) # pointwise/1x1 convs, implemented with linear layers
|
173 |
+
self.act = nn.GELU()
|
174 |
+
self.grn = GRN(mult * dim)
|
175 |
+
self.pwconv2 = nn.Linear(mult * dim, dim)
|
176 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
177 |
+
self.use_checkpoint = use_checkpoint
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
input = x
|
181 |
+
x = self.dwconv(x)
|
182 |
+
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
183 |
+
x = self.norm(x)
|
184 |
+
x = self.pwconv1(x)
|
185 |
+
x = self.act(x)
|
186 |
+
x = self.grn(x)
|
187 |
+
x = self.pwconv2(x)
|
188 |
+
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
189 |
+
|
190 |
+
x = input + self.drop_path(x)
|
191 |
+
return x
|
192 |
+
|
193 |
+
|
194 |
+
class ConvNeXtV2(nn.Module):
|
195 |
+
"""ConvNeXt V2
|
196 |
+
|
197 |
+
Args:
|
198 |
+
in_chans (int): Number of input image channels. Default: 3
|
199 |
+
num_classes (int): Number of classes for classification head. Default: 1000
|
200 |
+
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
|
201 |
+
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
|
202 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
203 |
+
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
|
204 |
+
"""
|
205 |
+
|
206 |
+
def __init__(
|
207 |
+
self,
|
208 |
+
in_chans=3,
|
209 |
+
depths=[3, 3, 9, 3],
|
210 |
+
dims=96,
|
211 |
+
drop_path_rate=0.0,
|
212 |
+
output_idx=[],
|
213 |
+
use_checkpoint=False,
|
214 |
+
):
|
215 |
+
super().__init__()
|
216 |
+
self.num_layers = len(depths)
|
217 |
+
self.depths = output_idx
|
218 |
+
self.embed_dims = [
|
219 |
+
int(dim) for i, dim in enumerate(dims) for _ in range(depths[i])
|
220 |
+
]
|
221 |
+
self.embed_dim = dims[0]
|
222 |
+
|
223 |
+
self.downsample_layers = (
|
224 |
+
nn.ModuleList()
|
225 |
+
) # stem and 3 intermediate downsampling conv layers
|
226 |
+
stem = nn.Sequential(
|
227 |
+
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
|
228 |
+
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
|
229 |
+
)
|
230 |
+
self.downsample_layers.append(stem)
|
231 |
+
for i in range(3):
|
232 |
+
downsample_layer = nn.Sequential(
|
233 |
+
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
|
234 |
+
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
|
235 |
+
)
|
236 |
+
self.downsample_layers.append(downsample_layer)
|
237 |
+
|
238 |
+
self.stages = (
|
239 |
+
nn.ModuleList()
|
240 |
+
) # 4 feature resolution stages, each consisting of multiple residual blocks
|
241 |
+
self.out_norms = nn.ModuleList()
|
242 |
+
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
243 |
+
cur = 0
|
244 |
+
for i in range(4):
|
245 |
+
stage = nn.ModuleList(
|
246 |
+
[
|
247 |
+
Block(
|
248 |
+
dim=dims[i],
|
249 |
+
drop_path=dp_rates[cur + j],
|
250 |
+
use_checkpoint=use_checkpoint,
|
251 |
+
)
|
252 |
+
for j in range(depths[i])
|
253 |
+
]
|
254 |
+
)
|
255 |
+
self.stages.append(stage)
|
256 |
+
cur += depths[i]
|
257 |
+
|
258 |
+
self.apply(self._init_weights)
|
259 |
+
|
260 |
+
def _init_weights(self, m):
|
261 |
+
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
262 |
+
trunc_normal_(m.weight, std=0.02)
|
263 |
+
nn.init.constant_(m.bias, 0)
|
264 |
+
|
265 |
+
def forward(self, x):
|
266 |
+
outs = []
|
267 |
+
for i in range(4):
|
268 |
+
x = self.downsample_layers[i](x)
|
269 |
+
for stage in self.stages[i]:
|
270 |
+
x = stage(x)
|
271 |
+
outs.append(x.permute(0, 2, 3, 1))
|
272 |
+
cls_tokens = [x.mean(dim=(1, 2)).unsqueeze(1).contiguous() for x in outs]
|
273 |
+
return outs, cls_tokens
|
274 |
+
|
275 |
+
def get_params(self, lr, wd, ld, *args, **kwargs):
|
276 |
+
encoder_p, encoder_lr = get_parameter_groups(self, lr, wd, ld)
|
277 |
+
return encoder_p, encoder_lr
|
278 |
+
|
279 |
+
def freeze(self) -> None:
|
280 |
+
for module in self.modules():
|
281 |
+
module.eval()
|
282 |
+
for parameters in self.parameters():
|
283 |
+
parameters.requires_grad = False
|
284 |
+
|
285 |
+
@classmethod
|
286 |
+
def build(cls, config):
|
287 |
+
obj = globals()[config["model"]["encoder"]["name"]](config)
|
288 |
+
return obj
|
flash3d/unidepth/models/backbones/dinov2.py
ADDED
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
import math
|
3 |
+
import logging
|
4 |
+
from typing import Sequence, Tuple, Union, Callable
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.utils.checkpoint import checkpoint
|
9 |
+
from torch.nn.init import trunc_normal_
|
10 |
+
|
11 |
+
from .metadinov2 import (
|
12 |
+
Mlp,
|
13 |
+
PatchEmbed,
|
14 |
+
SwiGLUFFNFused,
|
15 |
+
MemEffAttention,
|
16 |
+
NestedTensorBlock as Block,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.getLogger("dinov2")
|
21 |
+
|
22 |
+
|
23 |
+
def named_apply(
|
24 |
+
fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False
|
25 |
+
) -> nn.Module:
|
26 |
+
if not depth_first and include_root:
|
27 |
+
fn(module=module, name=name)
|
28 |
+
for child_name, child_module in module.named_children():
|
29 |
+
child_name = ".".join((name, child_name)) if name else child_name
|
30 |
+
named_apply(
|
31 |
+
fn=fn,
|
32 |
+
module=child_module,
|
33 |
+
name=child_name,
|
34 |
+
depth_first=depth_first,
|
35 |
+
include_root=True,
|
36 |
+
)
|
37 |
+
if depth_first and include_root:
|
38 |
+
fn(module=module, name=name)
|
39 |
+
return module
|
40 |
+
|
41 |
+
|
42 |
+
def get_parameter_groups(model, lr, wd=1e-5, ld=0.9, skip_list=()):
|
43 |
+
parameter_group_names = {}
|
44 |
+
parameter_group_vars = {}
|
45 |
+
skip = {}
|
46 |
+
if skip_list is not None:
|
47 |
+
skip = skip_list
|
48 |
+
elif hasattr(model, "no_weight_decay"):
|
49 |
+
skip = model.no_weight_decay()
|
50 |
+
|
51 |
+
num_layers = model.n_blocks
|
52 |
+
layer_scale = list(ld ** (num_layers - i) for i in range(num_layers))
|
53 |
+
|
54 |
+
for name, param in model.named_parameters():
|
55 |
+
if not param.requires_grad:
|
56 |
+
continue
|
57 |
+
|
58 |
+
if len(param.shape) == 1: # norm
|
59 |
+
group_name = "no_decay"
|
60 |
+
this_wd = 0.0
|
61 |
+
# layer scale, bias beta?
|
62 |
+
elif (
|
63 |
+
name in skip
|
64 |
+
or name.endswith(".gamma")
|
65 |
+
or name.endswith(".beta")
|
66 |
+
or name.endswith(".bias")
|
67 |
+
):
|
68 |
+
group_name = "no_decay"
|
69 |
+
this_wd = 0.0
|
70 |
+
elif "cls_token" in name or "pos_embed" in name or "mask_token" in name:
|
71 |
+
group_name = "no_decay"
|
72 |
+
this_wd = 0.0
|
73 |
+
else:
|
74 |
+
group_name = "decay"
|
75 |
+
this_wd = wd
|
76 |
+
|
77 |
+
if name.startswith("blocks"):
|
78 |
+
layer_id = int(name.split(".")[1])
|
79 |
+
elif name.startswith("patch_embed"):
|
80 |
+
layer_id = 0
|
81 |
+
else:
|
82 |
+
layer_id = 0
|
83 |
+
|
84 |
+
group_name = f"layer_{layer_id}_{group_name}"
|
85 |
+
|
86 |
+
if group_name not in parameter_group_names:
|
87 |
+
scale = layer_scale[layer_id]
|
88 |
+
cur_lr = lr * scale
|
89 |
+
|
90 |
+
parameter_group_names[group_name] = {
|
91 |
+
"weight_decay": this_wd,
|
92 |
+
"params": [],
|
93 |
+
"lr_init": cur_lr,
|
94 |
+
"lr_base": lr,
|
95 |
+
"lr": cur_lr,
|
96 |
+
}
|
97 |
+
parameter_group_vars[group_name] = {
|
98 |
+
"weight_decay": this_wd,
|
99 |
+
"params": [],
|
100 |
+
"lr_init": cur_lr,
|
101 |
+
"lr_base": lr,
|
102 |
+
"lr": cur_lr,
|
103 |
+
}
|
104 |
+
parameter_group_vars[group_name]["params"].append(param)
|
105 |
+
parameter_group_names[group_name]["params"].append(name)
|
106 |
+
return list(parameter_group_vars.values()), [
|
107 |
+
v["lr"] for k, v in parameter_group_vars.items()
|
108 |
+
]
|
109 |
+
|
110 |
+
|
111 |
+
class BlockChunk(nn.ModuleList):
|
112 |
+
def forward(self, x):
|
113 |
+
for b in self:
|
114 |
+
x = b(x)
|
115 |
+
return x
|
116 |
+
|
117 |
+
|
118 |
+
class DinoVisionTransformer(nn.Module):
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
img_size=224,
|
122 |
+
patch_size=16,
|
123 |
+
in_chans=3,
|
124 |
+
embed_dim=768,
|
125 |
+
depth=12,
|
126 |
+
num_heads=12,
|
127 |
+
mlp_ratio=4.0,
|
128 |
+
qkv_bias=True,
|
129 |
+
ffn_bias=True,
|
130 |
+
proj_bias=True,
|
131 |
+
drop_path_rate=0.0,
|
132 |
+
drop_path_uniform=False,
|
133 |
+
init_values=None, # for layerscale: None or 0 => no layerscale
|
134 |
+
embed_layer=PatchEmbed,
|
135 |
+
act_layer=nn.GELU,
|
136 |
+
block_fn=Block,
|
137 |
+
ffn_layer="mlp",
|
138 |
+
block_chunks=1,
|
139 |
+
output_idx=[5, 12, 18, 24],
|
140 |
+
checkpoint: bool = False,
|
141 |
+
num_register_tokens=0,
|
142 |
+
interpolate_antialias=False,
|
143 |
+
interpolate_offset=0.1,
|
144 |
+
):
|
145 |
+
"""
|
146 |
+
Args:
|
147 |
+
img_size (int, tuple): input image size
|
148 |
+
patch_size (int, tuple): patch size
|
149 |
+
in_chans (int): number of input channels
|
150 |
+
embed_dim (int): embedding dimension
|
151 |
+
depth (int): depth of transformer
|
152 |
+
num_heads (int): number of attention heads
|
153 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
154 |
+
qkv_bias (bool): enable bias for qkv if True
|
155 |
+
proj_bias (bool): enable bias for proj in attn if True
|
156 |
+
ffn_bias (bool): enable bias for ffn if True
|
157 |
+
drop_path_rate (float): stochastic depth rate
|
158 |
+
drop_path_uniform (bool): apply uniform drop rate across blocks
|
159 |
+
weight_init (str): weight init scheme
|
160 |
+
init_values (float): layer-scale init values
|
161 |
+
embed_layer (nn.Module): patch embedding layer
|
162 |
+
act_layer (nn.Module): MLP activation layer
|
163 |
+
block_fn (nn.Module): transformer block class
|
164 |
+
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
|
165 |
+
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
|
166 |
+
"""
|
167 |
+
super().__init__()
|
168 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
169 |
+
|
170 |
+
self.num_features = self.embed_dim = (
|
171 |
+
embed_dim # num_features for consistency with other models
|
172 |
+
)
|
173 |
+
self.embed_dims = [embed_dim] * output_idx[-1]
|
174 |
+
self.num_tokens = 1
|
175 |
+
self.n_blocks = depth
|
176 |
+
self.num_heads = num_heads
|
177 |
+
self.patch_size = patch_size
|
178 |
+
self.depths = output_idx
|
179 |
+
self.checkpoint = checkpoint
|
180 |
+
self.num_register_tokens = num_register_tokens
|
181 |
+
self.interpolate_antialias = interpolate_antialias
|
182 |
+
self.interpolate_offset = interpolate_offset
|
183 |
+
|
184 |
+
self.patch_embed = embed_layer(
|
185 |
+
img_size=img_size,
|
186 |
+
patch_size=patch_size,
|
187 |
+
in_chans=in_chans,
|
188 |
+
embed_dim=embed_dim,
|
189 |
+
)
|
190 |
+
num_patches = self.patch_embed.num_patches
|
191 |
+
|
192 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
193 |
+
self.pos_embed = nn.Parameter(
|
194 |
+
torch.zeros(1, num_patches + self.num_tokens, embed_dim)
|
195 |
+
)
|
196 |
+
assert num_register_tokens >= 0
|
197 |
+
self.register_tokens = nn.Parameter(
|
198 |
+
torch.zeros(1, max(1, num_register_tokens), embed_dim)
|
199 |
+
)
|
200 |
+
|
201 |
+
if drop_path_uniform is True:
|
202 |
+
dpr = [drop_path_rate] * depth
|
203 |
+
else:
|
204 |
+
dpr = [
|
205 |
+
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
206 |
+
] # stochastic depth decay rule
|
207 |
+
|
208 |
+
if ffn_layer == "mlp":
|
209 |
+
logger.info("using MLP layer as FFN")
|
210 |
+
ffn_layer = Mlp
|
211 |
+
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
|
212 |
+
logger.info("using SwiGLU layer as FFN")
|
213 |
+
ffn_layer = SwiGLUFFNFused
|
214 |
+
elif ffn_layer == "identity":
|
215 |
+
logger.info("using Identity layer as FFN")
|
216 |
+
|
217 |
+
def f(*args, **kwargs):
|
218 |
+
return nn.Identity()
|
219 |
+
|
220 |
+
ffn_layer = f
|
221 |
+
else:
|
222 |
+
raise NotImplementedError
|
223 |
+
|
224 |
+
blocks_list = [
|
225 |
+
block_fn(
|
226 |
+
dim=embed_dim,
|
227 |
+
num_heads=num_heads,
|
228 |
+
mlp_ratio=mlp_ratio,
|
229 |
+
qkv_bias=qkv_bias,
|
230 |
+
proj_bias=proj_bias,
|
231 |
+
ffn_bias=ffn_bias,
|
232 |
+
drop_path=dpr[i],
|
233 |
+
norm_layer=norm_layer,
|
234 |
+
act_layer=act_layer,
|
235 |
+
ffn_layer=ffn_layer,
|
236 |
+
init_values=init_values,
|
237 |
+
)
|
238 |
+
for i in range(depth)
|
239 |
+
]
|
240 |
+
if block_chunks > 0:
|
241 |
+
self.chunked_blocks = True
|
242 |
+
chunked_blocks = []
|
243 |
+
chunksize = depth // block_chunks
|
244 |
+
for i in range(0, depth, chunksize):
|
245 |
+
# this is to keep the block index consistent if we chunk the block list
|
246 |
+
chunked_blocks.append(
|
247 |
+
[nn.Identity()] * i + blocks_list[i : i + chunksize]
|
248 |
+
)
|
249 |
+
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
|
250 |
+
else:
|
251 |
+
self.chunked_blocks = False
|
252 |
+
self.blocks = nn.ModuleList(blocks_list)
|
253 |
+
|
254 |
+
# self.norm = norm_layer(embed_dim)
|
255 |
+
self.head = nn.Identity()
|
256 |
+
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
|
257 |
+
self.init_weights()
|
258 |
+
|
259 |
+
def init_weights(self):
|
260 |
+
trunc_normal_(self.pos_embed, std=0.02)
|
261 |
+
nn.init.normal_(self.cls_token, std=1e-6)
|
262 |
+
if self.num_register_tokens:
|
263 |
+
nn.init.normal_(self.register_tokens, std=1e-6)
|
264 |
+
named_apply(init_weights_vit_timm, self)
|
265 |
+
|
266 |
+
def interpolate_pos_encoding(self, x, w, h):
|
267 |
+
previous_dtype = x.dtype
|
268 |
+
npatch = x.shape[1] - 1
|
269 |
+
N = self.pos_embed.shape[1] - 1
|
270 |
+
if npatch == N and w == h:
|
271 |
+
return self.pos_embed
|
272 |
+
pos_embed = self.pos_embed.float()
|
273 |
+
class_pos_embed = pos_embed[:, 0]
|
274 |
+
patch_pos_embed = pos_embed[:, 1:]
|
275 |
+
dim = x.shape[-1]
|
276 |
+
w0 = w // self.patch_size
|
277 |
+
h0 = h // self.patch_size
|
278 |
+
# we add a small number to avoid floating point error in the interpolation
|
279 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
280 |
+
w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
|
281 |
+
|
282 |
+
patch_pos_embed = nn.functional.interpolate(
|
283 |
+
patch_pos_embed.reshape(
|
284 |
+
1, int(math.sqrt(N)), int(math.sqrt(N)), dim
|
285 |
+
).permute(0, 3, 1, 2),
|
286 |
+
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
|
287 |
+
mode="bicubic",
|
288 |
+
antialias=self.interpolate_antialias,
|
289 |
+
)
|
290 |
+
|
291 |
+
assert (
|
292 |
+
int(w0) == patch_pos_embed.shape[-2]
|
293 |
+
and int(h0) == patch_pos_embed.shape[-1]
|
294 |
+
)
|
295 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
296 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(
|
297 |
+
previous_dtype
|
298 |
+
)
|
299 |
+
|
300 |
+
def prepare_tokens_with_masks(self, x, masks=None):
|
301 |
+
B, nc, w, h = x.shape
|
302 |
+
x = self.patch_embed(x)
|
303 |
+
if masks is not None:
|
304 |
+
masks = masks.bool().view(B, -1, 1)
|
305 |
+
x = torch.where(masks, self.mask_token.to(x.dtype).unsqueeze(0), x)
|
306 |
+
|
307 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
308 |
+
x = x + self.interpolate_pos_encoding(x, w, h)
|
309 |
+
|
310 |
+
if self.num_register_tokens:
|
311 |
+
x = torch.cat(
|
312 |
+
(x[:, :1], self.register_tokens.expand(x.shape[0], -1, -1), x[:, 1:]),
|
313 |
+
dim=1,
|
314 |
+
)
|
315 |
+
|
316 |
+
return x
|
317 |
+
|
318 |
+
def forward_features(self, x, masks=None):
|
319 |
+
# if isinstance(x, list):
|
320 |
+
# return self.forward_features_list(x, masks)
|
321 |
+
shapes = [val // self.patch_size for val in x.shape[-2:]]
|
322 |
+
batch_size = x.shape[0]
|
323 |
+
x = self.prepare_tokens_with_masks(x, masks)
|
324 |
+
output, cls_tokens = [], []
|
325 |
+
|
326 |
+
for i, blk in enumerate(self.blocks):
|
327 |
+
x = blk(x)
|
328 |
+
cls_token = x[:, :1]
|
329 |
+
|
330 |
+
out = x[:, self.num_register_tokens + 1 :]
|
331 |
+
# was like this before, add cls to dense features
|
332 |
+
# out = out + cls_token
|
333 |
+
|
334 |
+
output.append(out.view(batch_size, *shapes, -1))
|
335 |
+
cls_tokens.append(cls_token)
|
336 |
+
return (output, cls_tokens)
|
337 |
+
|
338 |
+
def get_params(self, lr, wd, ld, *args, **kwargs):
|
339 |
+
encoder_p, encoder_lr = get_parameter_groups(self, lr, wd, ld)
|
340 |
+
return encoder_p, encoder_lr
|
341 |
+
|
342 |
+
def freeze(self) -> None:
|
343 |
+
for module in self.modules():
|
344 |
+
module.eval()
|
345 |
+
for parameters in self.parameters():
|
346 |
+
parameters.requires_grad = False
|
347 |
+
|
348 |
+
def train(self, mode=True):
|
349 |
+
super().train(mode)
|
350 |
+
self.mask_token.requires_grad = False
|
351 |
+
self.register_tokens.requires_grad = False
|
352 |
+
|
353 |
+
def forward(self, *args, is_training=False, **kwargs):
|
354 |
+
ret = self.forward_features(*args, **kwargs)
|
355 |
+
return ret
|
356 |
+
|
357 |
+
|
358 |
+
def init_weights_vit_timm(module: nn.Module, name: str = ""):
|
359 |
+
"""ViT weight initialization, original timm impl (for reproducibility)"""
|
360 |
+
if isinstance(module, nn.Linear):
|
361 |
+
trunc_normal_(module.weight, std=0.02)
|
362 |
+
if module.bias is not None:
|
363 |
+
nn.init.zeros_(module.bias)
|
364 |
+
|
365 |
+
|
366 |
+
def vit_small(patch_size=16, **kwargs):
|
367 |
+
model = DinoVisionTransformer(
|
368 |
+
patch_size=patch_size,
|
369 |
+
embed_dim=384,
|
370 |
+
depth=12,
|
371 |
+
num_heads=6,
|
372 |
+
mlp_ratio=4,
|
373 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
374 |
+
**kwargs,
|
375 |
+
)
|
376 |
+
return model
|
377 |
+
|
378 |
+
|
379 |
+
def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
|
380 |
+
model = DinoVisionTransformer(
|
381 |
+
patch_size=patch_size,
|
382 |
+
embed_dim=768,
|
383 |
+
depth=12,
|
384 |
+
num_heads=12,
|
385 |
+
mlp_ratio=4,
|
386 |
+
num_register_tokens=num_register_tokens,
|
387 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
388 |
+
**kwargs,
|
389 |
+
)
|
390 |
+
return model
|
391 |
+
|
392 |
+
|
393 |
+
def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
|
394 |
+
model = DinoVisionTransformer(
|
395 |
+
patch_size=patch_size,
|
396 |
+
embed_dim=1024,
|
397 |
+
depth=24,
|
398 |
+
num_heads=16,
|
399 |
+
mlp_ratio=4,
|
400 |
+
num_register_tokens=num_register_tokens,
|
401 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
402 |
+
**kwargs,
|
403 |
+
)
|
404 |
+
return model
|
405 |
+
|
406 |
+
|
407 |
+
def vit_giant2(patch_size=16, **kwargs):
|
408 |
+
"""
|
409 |
+
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
|
410 |
+
"""
|
411 |
+
model = DinoVisionTransformer(
|
412 |
+
patch_size=patch_size,
|
413 |
+
embed_dim=1536,
|
414 |
+
depth=40,
|
415 |
+
num_heads=24,
|
416 |
+
mlp_ratio=4,
|
417 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
418 |
+
**kwargs,
|
419 |
+
)
|
420 |
+
return model
|
421 |
+
|
422 |
+
|
423 |
+
import torch
|
424 |
+
import torch.nn as nn
|
425 |
+
|
426 |
+
|
427 |
+
dependencies = ["torch"]
|
428 |
+
|
429 |
+
|
430 |
+
_DINOV2_BASE_URL = "https://dl.fbaipublicfiles.com/dinov2"
|
431 |
+
|
432 |
+
|
433 |
+
def _make_dinov2_model_name(arch_name: str, patch_size: int) -> str:
|
434 |
+
compact_arch_name = arch_name.replace("_", "")[:4]
|
435 |
+
return f"dinov2_{compact_arch_name}{patch_size}"
|
436 |
+
|
437 |
+
|
438 |
+
def _make_dinov2_model(
|
439 |
+
*,
|
440 |
+
arch_name: str = "vit_large",
|
441 |
+
img_size: int = 518,
|
442 |
+
patch_size: int = 14,
|
443 |
+
init_values: float = 1.0,
|
444 |
+
ffn_layer: str = "mlp",
|
445 |
+
block_chunks: int = 0,
|
446 |
+
pretrained: str = "",
|
447 |
+
output_idx: Sequence[int] = [],
|
448 |
+
num_register_tokens: int = 0,
|
449 |
+
drop_path_rate: float = 0.0,
|
450 |
+
**kwargs,
|
451 |
+
):
|
452 |
+
model_name = _make_dinov2_model_name(arch_name, patch_size)
|
453 |
+
print("Instantiate:", model_name)
|
454 |
+
|
455 |
+
vit_kwargs = dict(
|
456 |
+
img_size=img_size,
|
457 |
+
patch_size=patch_size,
|
458 |
+
init_values=init_values,
|
459 |
+
ffn_layer=ffn_layer,
|
460 |
+
block_chunks=block_chunks,
|
461 |
+
output_idx=output_idx,
|
462 |
+
drop_path_rate=drop_path_rate,
|
463 |
+
num_register_tokens=num_register_tokens,
|
464 |
+
)
|
465 |
+
vit_kwargs.update(**kwargs)
|
466 |
+
model = eval(arch_name)(**vit_kwargs)
|
467 |
+
if pretrained == "":
|
468 |
+
url = _DINOV2_BASE_URL + f"/{model_name}/{model_name}"
|
469 |
+
if num_register_tokens > 0:
|
470 |
+
url += "_reg4"
|
471 |
+
url += "_pretrain.pth"
|
472 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
473 |
+
url, map_location="cpu", progress=False
|
474 |
+
)
|
475 |
+
info = model.load_state_dict(state_dict, strict=False)
|
476 |
+
print(info)
|
477 |
+
elif pretrained is not None:
|
478 |
+
state_dict = torch.load(pretrained, map_location="cpu")
|
479 |
+
info = model.load_state_dict(state_dict, strict=False)
|
480 |
+
print(f"loading from {pretrained} with:", info)
|
481 |
+
return model
|
482 |
+
|
483 |
+
# def forward_features_list(self, x_list, masks_list):
|
484 |
+
# x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
|
485 |
+
# for blk in self.blocks:
|
486 |
+
# x = blk(x)
|
487 |
+
|
488 |
+
# all_x = x
|
489 |
+
# output = []
|
490 |
+
# for x, masks in zip(all_x, masks_list):
|
491 |
+
# x_norm = self.norm(x)
|
492 |
+
# output.append(
|
493 |
+
# {
|
494 |
+
# "x_norm_clstoken": x_norm[:, 0],
|
495 |
+
# "x_norm_patchtokens": x_norm[:, 1:],
|
496 |
+
# "x_prenorm": x,
|
497 |
+
# "masks": masks,
|
498 |
+
# }
|
499 |
+
# )
|
500 |
+
# return output
|
501 |
+
|
502 |
+
# def _get_intermediate_layers_not_chunked(self, x, n=1):
|
503 |
+
# x = self.prepare_tokens_with_masks(x)
|
504 |
+
# # If n is an int, take the n last blocks. If it's a list, take them
|
505 |
+
# output, total_block_len = [], len(self.blocks)
|
506 |
+
# blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
507 |
+
# for i, blk in enumerate(self.blocks):
|
508 |
+
# x = blk(x)
|
509 |
+
# if i in blocks_to_take:
|
510 |
+
# output.append(x)
|
511 |
+
# assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
512 |
+
# return output
|
513 |
+
|
514 |
+
# def _get_intermediate_layers_chunked(self, x, n=1):
|
515 |
+
# x = self.prepare_tokens_with_masks(x)
|
516 |
+
# output, i, total_block_len = [], 0, len(self.blocks[-1])
|
517 |
+
# # If n is an int, take the n last blocks. If it's a list, take them
|
518 |
+
# blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
519 |
+
# for block_chunk in self.blocks:
|
520 |
+
# for blk in block_chunk[i:]: # Passing the nn.Identity()
|
521 |
+
# x = blk(x)
|
522 |
+
# if i in blocks_to_take:
|
523 |
+
# output.append(x)
|
524 |
+
# i += 1
|
525 |
+
# assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
526 |
+
# return output
|
527 |
+
|
528 |
+
# def get_intermediate_layers(
|
529 |
+
# self,
|
530 |
+
# x: torch.Tensor,
|
531 |
+
# n: Union[int, Sequence] = 1, # Layers or n last layers to take
|
532 |
+
# reshape: bool = False,
|
533 |
+
# return_class_token: bool = False,
|
534 |
+
# norm=True,
|
535 |
+
# ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
536 |
+
# if self.chunked_blocks:
|
537 |
+
# outputs = self._get_intermediate_layers_chunked(x, n)
|
538 |
+
# else:
|
539 |
+
# outputs = self._get_intermediate_layers_not_chunked(x, n)
|
540 |
+
# if norm:
|
541 |
+
# outputs = [self.norm(out) for out in outputs]
|
542 |
+
# class_tokens = [out[:, 0] for out in outputs]
|
543 |
+
# outputs = [out[:, 1:] for out in outputs]
|
544 |
+
# if reshape:
|
545 |
+
# B, _, w, h = x.shape
|
546 |
+
# outputs = [
|
547 |
+
# out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
|
548 |
+
# for out in outputs
|
549 |
+
# ]
|
550 |
+
# if return_class_token:
|
551 |
+
# return tuple(zip(outputs, class_tokens))
|
552 |
+
# return tuple(outputs)
|
flash3d/unidepth/models/backbones/metadinov2/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from .dino_head import DINOHead
|
8 |
+
from .mlp import Mlp
|
9 |
+
from .patch_embed import PatchEmbed
|
10 |
+
from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
|
11 |
+
from .block import NestedTensorBlock
|
12 |
+
from .attention import MemEffAttention
|
flash3d/unidepth/models/backbones/metadinov2/attention.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# References:
|
8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
10 |
+
|
11 |
+
import logging
|
12 |
+
|
13 |
+
from torch import Tensor
|
14 |
+
import torch.nn as nn
|
15 |
+
|
16 |
+
|
17 |
+
logger = logging.getLogger("dinov2")
|
18 |
+
|
19 |
+
|
20 |
+
try:
|
21 |
+
from xformers.ops import memory_efficient_attention, unbind, fmha
|
22 |
+
|
23 |
+
XFORMERS_AVAILABLE = True
|
24 |
+
except ImportError:
|
25 |
+
logger.warning("xFormers not available")
|
26 |
+
XFORMERS_AVAILABLE = False
|
27 |
+
|
28 |
+
|
29 |
+
class Attention(nn.Module):
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
dim: int,
|
33 |
+
num_heads: int = 8,
|
34 |
+
qkv_bias: bool = False,
|
35 |
+
proj_bias: bool = True,
|
36 |
+
attn_drop: float = 0.0,
|
37 |
+
proj_drop: float = 0.0,
|
38 |
+
) -> None:
|
39 |
+
super().__init__()
|
40 |
+
self.num_heads = num_heads
|
41 |
+
head_dim = dim // num_heads
|
42 |
+
self.scale = head_dim**-0.5
|
43 |
+
|
44 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
45 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
46 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
47 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
48 |
+
|
49 |
+
def forward(self, x: Tensor) -> Tensor:
|
50 |
+
B, N, C = x.shape
|
51 |
+
qkv = (
|
52 |
+
self.qkv(x)
|
53 |
+
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
54 |
+
.permute(2, 0, 3, 1, 4)
|
55 |
+
)
|
56 |
+
|
57 |
+
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
58 |
+
attn = q @ k.transpose(-2, -1)
|
59 |
+
|
60 |
+
attn = attn.softmax(dim=-1)
|
61 |
+
attn = self.attn_drop(attn)
|
62 |
+
|
63 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
64 |
+
x = self.proj(x)
|
65 |
+
x = self.proj_drop(x)
|
66 |
+
return x
|
67 |
+
|
68 |
+
|
69 |
+
class MemEffAttention(Attention):
|
70 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
71 |
+
if not XFORMERS_AVAILABLE:
|
72 |
+
assert attn_bias is None, "xFormers is required for nested tensors usage"
|
73 |
+
return super().forward(x)
|
74 |
+
|
75 |
+
B, N, C = x.shape
|
76 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
77 |
+
|
78 |
+
q, k, v = unbind(qkv, 2)
|
79 |
+
|
80 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
81 |
+
x = x.reshape([B, N, C])
|
82 |
+
|
83 |
+
x = self.proj(x)
|
84 |
+
x = self.proj_drop(x)
|
85 |
+
return x
|
flash3d/unidepth/models/backbones/metadinov2/block.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# References:
|
8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
10 |
+
|
11 |
+
import logging
|
12 |
+
from typing import Callable, List, Any, Tuple, Dict
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
|
17 |
+
from .attention import Attention, MemEffAttention
|
18 |
+
from .drop_path import DropPath
|
19 |
+
from .layer_scale import LayerScale
|
20 |
+
from .mlp import Mlp
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.getLogger("dinov2")
|
24 |
+
|
25 |
+
|
26 |
+
try:
|
27 |
+
from xformers.ops import fmha
|
28 |
+
from xformers.ops import scaled_index_add, index_select_cat
|
29 |
+
|
30 |
+
XFORMERS_AVAILABLE = True
|
31 |
+
except ImportError:
|
32 |
+
logger.warning("xFormers not available")
|
33 |
+
XFORMERS_AVAILABLE = False
|
34 |
+
|
35 |
+
|
36 |
+
class Block(nn.Module):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
dim: int,
|
40 |
+
num_heads: int,
|
41 |
+
mlp_ratio: float = 4.0,
|
42 |
+
qkv_bias: bool = False,
|
43 |
+
proj_bias: bool = True,
|
44 |
+
ffn_bias: bool = True,
|
45 |
+
drop: float = 0.0,
|
46 |
+
attn_drop: float = 0.0,
|
47 |
+
init_values=None,
|
48 |
+
drop_path: float = 0.0,
|
49 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
50 |
+
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
|
51 |
+
attn_class: Callable[..., nn.Module] = Attention,
|
52 |
+
ffn_layer: Callable[..., nn.Module] = Mlp,
|
53 |
+
) -> None:
|
54 |
+
super().__init__()
|
55 |
+
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
|
56 |
+
self.norm1 = norm_layer(dim)
|
57 |
+
self.attn = attn_class(
|
58 |
+
dim,
|
59 |
+
num_heads=num_heads,
|
60 |
+
qkv_bias=qkv_bias,
|
61 |
+
proj_bias=proj_bias,
|
62 |
+
attn_drop=attn_drop,
|
63 |
+
proj_drop=drop,
|
64 |
+
)
|
65 |
+
self.ls1 = (
|
66 |
+
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
67 |
+
)
|
68 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
69 |
+
|
70 |
+
self.norm2 = norm_layer(dim)
|
71 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
72 |
+
self.mlp = ffn_layer(
|
73 |
+
in_features=dim,
|
74 |
+
hidden_features=mlp_hidden_dim,
|
75 |
+
act_layer=act_layer,
|
76 |
+
drop=drop,
|
77 |
+
bias=ffn_bias,
|
78 |
+
)
|
79 |
+
self.ls2 = (
|
80 |
+
LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
81 |
+
)
|
82 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
83 |
+
|
84 |
+
self.sample_drop_ratio = drop_path
|
85 |
+
|
86 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
87 |
+
def attn_residual_func(x: torch.Tensor) -> torch.Tensor:
|
88 |
+
return self.ls1(self.attn(self.norm1(x)))
|
89 |
+
|
90 |
+
def ffn_residual_func(x: torch.Tensor) -> torch.Tensor:
|
91 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
92 |
+
|
93 |
+
if self.training and self.sample_drop_ratio > 0.1:
|
94 |
+
# the overhead is compensated only for a drop path rate larger than 0.1
|
95 |
+
x = drop_add_residual_stochastic_depth(
|
96 |
+
x,
|
97 |
+
residual_func=attn_residual_func,
|
98 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
99 |
+
)
|
100 |
+
x = drop_add_residual_stochastic_depth(
|
101 |
+
x,
|
102 |
+
residual_func=ffn_residual_func,
|
103 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
104 |
+
)
|
105 |
+
elif self.training and self.sample_drop_ratio > 0.0:
|
106 |
+
x = x + self.drop_path1(attn_residual_func(x))
|
107 |
+
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
|
108 |
+
else:
|
109 |
+
x = x + attn_residual_func(x)
|
110 |
+
x = x + ffn_residual_func(x)
|
111 |
+
return x
|
112 |
+
|
113 |
+
|
114 |
+
def drop_add_residual_stochastic_depth(
|
115 |
+
x: torch.Tensor,
|
116 |
+
residual_func: Callable[[torch.Tensor], torch.Tensor],
|
117 |
+
sample_drop_ratio: float = 0.0,
|
118 |
+
) -> torch.Tensor:
|
119 |
+
# 1) extract subset using permutation
|
120 |
+
b, n, d = x.shape
|
121 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
122 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
123 |
+
x_subset = x[brange]
|
124 |
+
|
125 |
+
# 2) apply residual_func to get residual
|
126 |
+
residual = residual_func(x_subset)
|
127 |
+
|
128 |
+
x_flat = x.flatten(1)
|
129 |
+
residual = residual.flatten(1)
|
130 |
+
|
131 |
+
residual_scale_factor = b / sample_subset_size
|
132 |
+
|
133 |
+
# 3) add the residual
|
134 |
+
x_plus_residual = torch.index_add(
|
135 |
+
x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor
|
136 |
+
)
|
137 |
+
return x_plus_residual.view_as(x)
|
138 |
+
|
139 |
+
|
140 |
+
def get_branges_scales(x, sample_drop_ratio=0.0):
|
141 |
+
b, n, d = x.shape
|
142 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
143 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
144 |
+
residual_scale_factor = b / sample_subset_size
|
145 |
+
return brange, residual_scale_factor
|
146 |
+
|
147 |
+
|
148 |
+
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
|
149 |
+
if scaling_vector is None:
|
150 |
+
x_flat = x.flatten(1)
|
151 |
+
residual = residual.flatten(1)
|
152 |
+
x_plus_residual = torch.index_add(
|
153 |
+
x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
x_plus_residual = scaled_index_add(
|
157 |
+
x,
|
158 |
+
brange,
|
159 |
+
residual.to(dtype=x.dtype),
|
160 |
+
scaling=scaling_vector,
|
161 |
+
alpha=residual_scale_factor,
|
162 |
+
)
|
163 |
+
return x_plus_residual
|
164 |
+
|
165 |
+
|
166 |
+
attn_bias_cache: Dict[Tuple, Any] = {}
|
167 |
+
|
168 |
+
|
169 |
+
def get_attn_bias_and_cat(x_list, branges=None):
|
170 |
+
"""
|
171 |
+
this will perform the index select, cat the tensors, and provide the attn_bias from cache
|
172 |
+
"""
|
173 |
+
batch_sizes = (
|
174 |
+
[b.shape[0] for b in branges]
|
175 |
+
if branges is not None
|
176 |
+
else [x.shape[0] for x in x_list]
|
177 |
+
)
|
178 |
+
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
|
179 |
+
if all_shapes not in attn_bias_cache.keys():
|
180 |
+
seqlens = []
|
181 |
+
for b, x in zip(batch_sizes, x_list):
|
182 |
+
for _ in range(b):
|
183 |
+
seqlens.append(x.shape[1])
|
184 |
+
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
|
185 |
+
attn_bias._batch_sizes = batch_sizes
|
186 |
+
attn_bias_cache[all_shapes] = attn_bias
|
187 |
+
|
188 |
+
if branges is not None:
|
189 |
+
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(
|
190 |
+
1, -1, x_list[0].shape[-1]
|
191 |
+
)
|
192 |
+
else:
|
193 |
+
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
|
194 |
+
cat_tensors = torch.cat(tensors_bs1, dim=1)
|
195 |
+
|
196 |
+
return attn_bias_cache[all_shapes], cat_tensors
|
197 |
+
|
198 |
+
|
199 |
+
def drop_add_residual_stochastic_depth_list(
|
200 |
+
x_list: List[torch.Tensor],
|
201 |
+
residual_func: Callable[[torch.Tensor, Any], torch.Tensor],
|
202 |
+
sample_drop_ratio: float = 0.0,
|
203 |
+
scaling_vector=None,
|
204 |
+
) -> torch.Tensor:
|
205 |
+
# 1) generate random set of indices for dropping samples in the batch
|
206 |
+
branges_scales = [
|
207 |
+
get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list
|
208 |
+
]
|
209 |
+
branges = [s[0] for s in branges_scales]
|
210 |
+
residual_scale_factors = [s[1] for s in branges_scales]
|
211 |
+
|
212 |
+
# 2) get attention bias and index+concat the tensors
|
213 |
+
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
|
214 |
+
|
215 |
+
# 3) apply residual_func to get residual, and split the result
|
216 |
+
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
|
217 |
+
|
218 |
+
outputs = []
|
219 |
+
for x, brange, residual, residual_scale_factor in zip(
|
220 |
+
x_list, branges, residual_list, residual_scale_factors
|
221 |
+
):
|
222 |
+
outputs.append(
|
223 |
+
add_residual(
|
224 |
+
x, brange, residual, residual_scale_factor, scaling_vector
|
225 |
+
).view_as(x)
|
226 |
+
)
|
227 |
+
return outputs
|
228 |
+
|
229 |
+
|
230 |
+
class NestedTensorBlock(Block):
|
231 |
+
def forward_nested(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]:
|
232 |
+
"""
|
233 |
+
x_list contains a list of tensors to nest together and run
|
234 |
+
"""
|
235 |
+
assert isinstance(self.attn, MemEffAttention)
|
236 |
+
|
237 |
+
if self.training and self.sample_drop_ratio > 0.0:
|
238 |
+
|
239 |
+
def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
240 |
+
return self.attn(self.norm1(x), attn_bias=attn_bias)
|
241 |
+
|
242 |
+
def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
243 |
+
return self.mlp(self.norm2(x))
|
244 |
+
|
245 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
246 |
+
x_list,
|
247 |
+
residual_func=attn_residual_func,
|
248 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
249 |
+
scaling_vector=(
|
250 |
+
self.ls1.gamma if isinstance(self.ls1, LayerScale) else None
|
251 |
+
),
|
252 |
+
)
|
253 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
254 |
+
x_list,
|
255 |
+
residual_func=ffn_residual_func,
|
256 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
257 |
+
scaling_vector=(
|
258 |
+
self.ls2.gamma if isinstance(self.ls1, LayerScale) else None
|
259 |
+
),
|
260 |
+
)
|
261 |
+
return x_list
|
262 |
+
else:
|
263 |
+
|
264 |
+
def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
265 |
+
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
|
266 |
+
|
267 |
+
def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor:
|
268 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
269 |
+
|
270 |
+
attn_bias, x = get_attn_bias_and_cat(x_list)
|
271 |
+
x = x + attn_residual_func(x, attn_bias=attn_bias)
|
272 |
+
x = x + ffn_residual_func(x)
|
273 |
+
return attn_bias.split(x)
|
274 |
+
|
275 |
+
def forward(self, x_or_x_list):
|
276 |
+
if isinstance(x_or_x_list, torch.Tensor):
|
277 |
+
return super().forward(x_or_x_list)
|
278 |
+
elif isinstance(x_or_x_list, list):
|
279 |
+
assert (
|
280 |
+
XFORMERS_AVAILABLE
|
281 |
+
), "Please install xFormers for nested tensors usage"
|
282 |
+
return self.forward_nested(x_or_x_list)
|
283 |
+
else:
|
284 |
+
raise AssertionError
|
flash3d/unidepth/models/backbones/metadinov2/dino_head.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn.init import trunc_normal_
|
10 |
+
from torch.nn.utils import weight_norm
|
11 |
+
|
12 |
+
|
13 |
+
class DINOHead(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
in_dim,
|
17 |
+
out_dim,
|
18 |
+
use_bn=False,
|
19 |
+
nlayers=3,
|
20 |
+
hidden_dim=2048,
|
21 |
+
bottleneck_dim=256,
|
22 |
+
mlp_bias=True,
|
23 |
+
):
|
24 |
+
super().__init__()
|
25 |
+
nlayers = max(nlayers, 1)
|
26 |
+
self.mlp = _build_mlp(
|
27 |
+
nlayers,
|
28 |
+
in_dim,
|
29 |
+
bottleneck_dim,
|
30 |
+
hidden_dim=hidden_dim,
|
31 |
+
use_bn=use_bn,
|
32 |
+
bias=mlp_bias,
|
33 |
+
)
|
34 |
+
self.apply(self._init_weights)
|
35 |
+
self.last_layer = weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False))
|
36 |
+
self.last_layer.weight_g.data.fill_(1)
|
37 |
+
|
38 |
+
def _init_weights(self, m):
|
39 |
+
if isinstance(m, nn.Linear):
|
40 |
+
trunc_normal_(m.weight, std=0.02)
|
41 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
42 |
+
nn.init.constant_(m.bias, 0)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
x = self.mlp(x)
|
46 |
+
eps = 1e-6 if x.dtype == torch.float16 else 1e-12
|
47 |
+
x = nn.functional.normalize(x, dim=-1, p=2, eps=eps)
|
48 |
+
x = self.last_layer(x)
|
49 |
+
return x
|
50 |
+
|
51 |
+
|
52 |
+
def _build_mlp(
|
53 |
+
nlayers, in_dim, bottleneck_dim, hidden_dim=None, use_bn=False, bias=True
|
54 |
+
):
|
55 |
+
if nlayers == 1:
|
56 |
+
return nn.Linear(in_dim, bottleneck_dim, bias=bias)
|
57 |
+
else:
|
58 |
+
layers = [nn.Linear(in_dim, hidden_dim, bias=bias)]
|
59 |
+
if use_bn:
|
60 |
+
layers.append(nn.BatchNorm1d(hidden_dim))
|
61 |
+
layers.append(nn.GELU())
|
62 |
+
for _ in range(nlayers - 2):
|
63 |
+
layers.append(nn.Linear(hidden_dim, hidden_dim, bias=bias))
|
64 |
+
if use_bn:
|
65 |
+
layers.append(nn.BatchNorm1d(hidden_dim))
|
66 |
+
layers.append(nn.GELU())
|
67 |
+
layers.append(nn.Linear(hidden_dim, bottleneck_dim, bias=bias))
|
68 |
+
return nn.Sequential(*layers)
|
flash3d/unidepth/models/backbones/metadinov2/drop_path.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# References:
|
8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
|
10 |
+
|
11 |
+
|
12 |
+
import torch.nn as nn
|
13 |
+
|
14 |
+
|
15 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
16 |
+
if drop_prob == 0.0 or not training:
|
17 |
+
return x
|
18 |
+
keep_prob = 1 - drop_prob
|
19 |
+
shape = (x.shape[0],) + (1,) * (
|
20 |
+
x.ndim - 1
|
21 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
22 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
23 |
+
if keep_prob > 0.0:
|
24 |
+
random_tensor.div_(keep_prob)
|
25 |
+
output = x * random_tensor
|
26 |
+
return output
|
27 |
+
|
28 |
+
|
29 |
+
class DropPath(nn.Module):
|
30 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
31 |
+
|
32 |
+
def __init__(self, drop_prob=None):
|
33 |
+
super(DropPath, self).__init__()
|
34 |
+
self.drop_prob = drop_prob
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
return drop_path(x, self.drop_prob, self.training)
|
flash3d/unidepth/models/backbones/metadinov2/layer_scale.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
|
8 |
+
|
9 |
+
from typing import Union
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import Tensor
|
13 |
+
import torch.nn as nn
|
14 |
+
|
15 |
+
|
16 |
+
class LayerScale(nn.Module):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
dim: int,
|
20 |
+
init_values: Union[float, Tensor] = 1e-5,
|
21 |
+
inplace: bool = False,
|
22 |
+
) -> None:
|
23 |
+
super().__init__()
|
24 |
+
self.inplace = inplace
|
25 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
26 |
+
|
27 |
+
def forward(self, x: Tensor) -> Tensor:
|
28 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
flash3d/unidepth/models/backbones/metadinov2/mlp.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# References:
|
8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
|
10 |
+
|
11 |
+
|
12 |
+
from typing import Callable, Optional
|
13 |
+
|
14 |
+
from torch import Tensor, nn
|
15 |
+
|
16 |
+
|
17 |
+
class Mlp(nn.Module):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
in_features: int,
|
21 |
+
hidden_features: Optional[int] = None,
|
22 |
+
out_features: Optional[int] = None,
|
23 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
24 |
+
drop: float = 0.0,
|
25 |
+
bias: bool = True,
|
26 |
+
) -> None:
|
27 |
+
super().__init__()
|
28 |
+
out_features = out_features or in_features
|
29 |
+
hidden_features = hidden_features or in_features
|
30 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
31 |
+
self.act = act_layer()
|
32 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
33 |
+
self.drop = nn.Dropout(drop)
|
34 |
+
|
35 |
+
def forward(self, x: Tensor) -> Tensor:
|
36 |
+
x = self.fc1(x)
|
37 |
+
x = self.act(x)
|
38 |
+
x = self.drop(x)
|
39 |
+
x = self.fc2(x)
|
40 |
+
x = self.drop(x)
|
41 |
+
return x
|
flash3d/unidepth/models/backbones/metadinov2/patch_embed.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# References:
|
8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
10 |
+
|
11 |
+
from typing import Callable, Optional, Tuple, Union
|
12 |
+
|
13 |
+
from torch import Tensor
|
14 |
+
import torch.nn as nn
|
15 |
+
|
16 |
+
|
17 |
+
def make_2tuple(x):
|
18 |
+
if isinstance(x, tuple):
|
19 |
+
assert len(x) == 2
|
20 |
+
return x
|
21 |
+
|
22 |
+
assert isinstance(x, int)
|
23 |
+
return (x, x)
|
24 |
+
|
25 |
+
|
26 |
+
class PatchEmbed(nn.Module):
|
27 |
+
"""
|
28 |
+
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
29 |
+
|
30 |
+
Args:
|
31 |
+
img_size: Image size.
|
32 |
+
patch_size: Patch token size.
|
33 |
+
in_chans: Number of input image channels.
|
34 |
+
embed_dim: Number of linear projection output channels.
|
35 |
+
norm_layer: Normalization layer.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
41 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
42 |
+
in_chans: int = 3,
|
43 |
+
embed_dim: int = 768,
|
44 |
+
norm_layer: Optional[Callable] = None,
|
45 |
+
flatten_embedding: bool = True,
|
46 |
+
) -> None:
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
image_HW = make_2tuple(img_size)
|
50 |
+
patch_HW = make_2tuple(patch_size)
|
51 |
+
patch_grid_size = (
|
52 |
+
image_HW[0] // patch_HW[0],
|
53 |
+
image_HW[1] // patch_HW[1],
|
54 |
+
)
|
55 |
+
|
56 |
+
self.img_size = image_HW
|
57 |
+
self.patch_size = patch_HW
|
58 |
+
self.patches_resolution = patch_grid_size
|
59 |
+
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
60 |
+
|
61 |
+
self.in_chans = in_chans
|
62 |
+
self.embed_dim = embed_dim
|
63 |
+
|
64 |
+
self.flatten_embedding = flatten_embedding
|
65 |
+
|
66 |
+
self.proj = nn.Conv2d(
|
67 |
+
in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW
|
68 |
+
)
|
69 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
70 |
+
|
71 |
+
def forward(self, x: Tensor) -> Tensor:
|
72 |
+
_, _, H, W = x.shape
|
73 |
+
patch_H, patch_W = self.patch_size
|
74 |
+
|
75 |
+
assert (
|
76 |
+
H % patch_H == 0
|
77 |
+
), f"Input image height {H} is not a multiple of patch height {patch_H}"
|
78 |
+
assert (
|
79 |
+
W % patch_W == 0
|
80 |
+
), f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
81 |
+
|
82 |
+
x = self.proj(x) # B C H W
|
83 |
+
H, W = x.size(2), x.size(3)
|
84 |
+
x = x.flatten(2).transpose(1, 2) # B HW C
|
85 |
+
x = self.norm(x)
|
86 |
+
if not self.flatten_embedding:
|
87 |
+
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
|
88 |
+
return x
|
89 |
+
|
90 |
+
def flops(self) -> float:
|
91 |
+
Ho, Wo = self.patches_resolution
|
92 |
+
flops = (
|
93 |
+
Ho
|
94 |
+
* Wo
|
95 |
+
* self.embed_dim
|
96 |
+
* self.in_chans
|
97 |
+
* (self.patch_size[0] * self.patch_size[1])
|
98 |
+
)
|
99 |
+
if self.norm is not None:
|
100 |
+
flops += Ho * Wo * self.embed_dim
|
101 |
+
return flops
|
flash3d/unidepth/models/backbones/metadinov2/swiglu_ffn.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from typing import Callable, Optional
|
8 |
+
|
9 |
+
from torch import Tensor, nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
|
13 |
+
class SwiGLUFFN(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
in_features: int,
|
17 |
+
hidden_features: Optional[int] = None,
|
18 |
+
out_features: Optional[int] = None,
|
19 |
+
act_layer: Callable[..., nn.Module] = None,
|
20 |
+
drop: float = 0.0,
|
21 |
+
bias: bool = True,
|
22 |
+
) -> None:
|
23 |
+
super().__init__()
|
24 |
+
out_features = out_features or in_features
|
25 |
+
hidden_features = hidden_features or in_features
|
26 |
+
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
|
27 |
+
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
|
28 |
+
|
29 |
+
def forward(self, x: Tensor) -> Tensor:
|
30 |
+
x12 = self.w12(x)
|
31 |
+
x1, x2 = x12.chunk(2, dim=-1)
|
32 |
+
hidden = F.silu(x1) * x2
|
33 |
+
return self.w3(hidden)
|
34 |
+
|
35 |
+
|
36 |
+
try:
|
37 |
+
from xformers.ops import SwiGLU
|
38 |
+
|
39 |
+
XFORMERS_AVAILABLE = True
|
40 |
+
except ImportError:
|
41 |
+
SwiGLU = SwiGLUFFN
|
42 |
+
XFORMERS_AVAILABLE = False
|
43 |
+
|
44 |
+
|
45 |
+
class SwiGLUFFNFused(SwiGLU):
|
46 |
+
def __init__(
|
47 |
+
self,
|
48 |
+
in_features: int,
|
49 |
+
hidden_features: Optional[int] = None,
|
50 |
+
out_features: Optional[int] = None,
|
51 |
+
act_layer: Callable[..., nn.Module] = None,
|
52 |
+
drop: float = 0.0,
|
53 |
+
bias: bool = True,
|
54 |
+
) -> None:
|
55 |
+
out_features = out_features or in_features
|
56 |
+
hidden_features = hidden_features or in_features
|
57 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
58 |
+
super().__init__(
|
59 |
+
in_features=in_features,
|
60 |
+
hidden_features=hidden_features,
|
61 |
+
out_features=out_features,
|
62 |
+
bias=bias,
|
63 |
+
)
|
flash3d/unidepth/models/encoder.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from unidepth.models.backbones import ConvNeXtV2, _make_dinov2_model, ConvNeXt
|
5 |
+
|
6 |
+
|
7 |
+
class ModelWrap(nn.Module):
|
8 |
+
def __init__(self, model) -> None:
|
9 |
+
super().__init__()
|
10 |
+
self.backbone = model
|
11 |
+
|
12 |
+
def forward(self, x, *args, **kwargs):
|
13 |
+
features = []
|
14 |
+
for layer in self.backbone.features:
|
15 |
+
x = layer(x)
|
16 |
+
features.append(x)
|
17 |
+
return features
|
18 |
+
|
19 |
+
|
20 |
+
def convnextv2_base(config, **kwargs):
|
21 |
+
model = ConvNeXtV2(
|
22 |
+
depths=[3, 3, 27, 3],
|
23 |
+
dims=[128, 256, 512, 1024],
|
24 |
+
output_idx=config.get("output_idx", [3, 6, 33, 36]),
|
25 |
+
use_checkpoint=config.get("use_checkpoint", False),
|
26 |
+
**kwargs,
|
27 |
+
)
|
28 |
+
url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt"
|
29 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
30 |
+
url, map_location="cpu", progress=False
|
31 |
+
)["model"]
|
32 |
+
info = model.load_state_dict(state_dict, strict=False)
|
33 |
+
print(info)
|
34 |
+
return model
|
35 |
+
|
36 |
+
|
37 |
+
def convnextv2_large(config, **kwargs):
|
38 |
+
model = ConvNeXtV2(
|
39 |
+
depths=[3, 3, 27, 3],
|
40 |
+
dims=[192, 384, 768, 1536],
|
41 |
+
output_idx=config.get("output_idx", [3, 6, 33, 36]),
|
42 |
+
use_checkpoint=config.get("use_checkpoint", False),
|
43 |
+
**kwargs,
|
44 |
+
)
|
45 |
+
url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt"
|
46 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
47 |
+
url, map_location="cpu", progress=False
|
48 |
+
)["model"]
|
49 |
+
info = model.load_state_dict(state_dict, strict=False)
|
50 |
+
print(info)
|
51 |
+
return model
|
52 |
+
|
53 |
+
|
54 |
+
def convnextv2_large_mae(config, **kwargs):
|
55 |
+
model = ConvNeXtV2(
|
56 |
+
depths=[3, 3, 27, 3],
|
57 |
+
dims=[192, 384, 768, 1536],
|
58 |
+
output_idx=config.get("output_idx", [3, 6, 33, 36]),
|
59 |
+
use_checkpoint=config.get("use_checkpoint", False),
|
60 |
+
**kwargs,
|
61 |
+
)
|
62 |
+
url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_large_1k_224_fcmae.pt"
|
63 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
64 |
+
url, map_location="cpu", progress=False
|
65 |
+
)["model"]
|
66 |
+
info = model.load_state_dict(state_dict, strict=False)
|
67 |
+
print(info)
|
68 |
+
return model
|
69 |
+
|
70 |
+
|
71 |
+
def convnextv2_huge(config, **kwargs):
|
72 |
+
model = ConvNeXtV2(
|
73 |
+
depths=[3, 3, 27, 3],
|
74 |
+
dims=[352, 704, 1408, 2816],
|
75 |
+
output_idx=config.get("output_idx", [3, 6, 33, 36]),
|
76 |
+
use_checkpoint=config.get("use_checkpoint", False),
|
77 |
+
**kwargs,
|
78 |
+
)
|
79 |
+
url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt"
|
80 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
81 |
+
url, map_location="cpu", progress=False
|
82 |
+
)["model"]
|
83 |
+
info = model.load_state_dict(state_dict, strict=False)
|
84 |
+
print(info)
|
85 |
+
return model
|
86 |
+
|
87 |
+
|
88 |
+
def convnextv2_huge_mae(config, **kwargs):
|
89 |
+
model = ConvNeXtV2(
|
90 |
+
depths=[3, 3, 27, 3],
|
91 |
+
dims=[352, 704, 1408, 2816],
|
92 |
+
output_idx=config.get("output_idx", [3, 6, 33, 36]),
|
93 |
+
use_checkpoint=config.get("use_checkpoint", False),
|
94 |
+
**kwargs,
|
95 |
+
)
|
96 |
+
url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_huge_1k_224_fcmae.pt"
|
97 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
98 |
+
url, map_location="cpu", progress=False
|
99 |
+
)["model"]
|
100 |
+
info = model.load_state_dict(state_dict, strict=False)
|
101 |
+
print(info)
|
102 |
+
return model
|
103 |
+
|
104 |
+
|
105 |
+
def convnext_large_pt(config, **kwargs):
|
106 |
+
model = ConvNeXt(
|
107 |
+
depths=[3, 3, 27, 3],
|
108 |
+
dims=[192, 384, 768, 1536],
|
109 |
+
output_idx=config.get("output_idx", [3, 6, 33, 36]),
|
110 |
+
use_checkpoint=config.get("use_checkpoint", False),
|
111 |
+
**kwargs,
|
112 |
+
)
|
113 |
+
from unidepth.models.backbones.convnext import HF_URL, checkpoint_filter_fn
|
114 |
+
from huggingface_hub import hf_hub_download
|
115 |
+
from huggingface_hub.utils import disable_progress_bars
|
116 |
+
|
117 |
+
disable_progress_bars()
|
118 |
+
repo_id, filename = HF_URL["convnext_large_pt"]
|
119 |
+
state_dict = torch.load(hf_hub_download(repo_id=repo_id, filename=filename))
|
120 |
+
state_dict = checkpoint_filter_fn(state_dict, model)
|
121 |
+
info = model.load_state_dict(state_dict, strict=False)
|
122 |
+
print(info)
|
123 |
+
return model
|
124 |
+
|
125 |
+
|
126 |
+
def convnext_large(config, **kwargs):
|
127 |
+
model = ConvNeXt(
|
128 |
+
depths=[3, 3, 27, 3],
|
129 |
+
dims=[192, 384, 768, 1536],
|
130 |
+
output_idx=config.get("output_idx", [3, 6, 33, 36]),
|
131 |
+
use_checkpoint=config.get("use_checkpoint", False),
|
132 |
+
drop_path_rate=config.get("drop_path", 0.0),
|
133 |
+
**kwargs,
|
134 |
+
)
|
135 |
+
return model
|
136 |
+
|
137 |
+
|
138 |
+
def dinov2_vitb14(config, pretrained: bool = True, **kwargs):
|
139 |
+
"""
|
140 |
+
DINOv2 ViT-B/14 model (optionally) pretrained on the LVD-142M dataset.
|
141 |
+
"""
|
142 |
+
vit = _make_dinov2_model(
|
143 |
+
arch_name="vit_base",
|
144 |
+
pretrained=pretrained,
|
145 |
+
output_idx=config.get("output_idx", [3, 6, 9, 12]),
|
146 |
+
checkpoint=config.get("use_checkpoint", False),
|
147 |
+
drop_path_rate=config.get("drop_path", 0.0),
|
148 |
+
num_register_tokens=config.get("num_register_tokens", 0),
|
149 |
+
**kwargs,
|
150 |
+
)
|
151 |
+
return vit
|
152 |
+
|
153 |
+
|
154 |
+
def dinov2_vitl14(config, pretrained: str = "", **kwargs):
|
155 |
+
"""
|
156 |
+
DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset.
|
157 |
+
"""
|
158 |
+
vit = _make_dinov2_model(
|
159 |
+
arch_name="vit_large",
|
160 |
+
pretrained=config["pretrained"],
|
161 |
+
output_idx=config.get("output_idx", [5, 12, 18, 24]),
|
162 |
+
checkpoint=config.get("use_checkpoint", False),
|
163 |
+
drop_path_rate=config.get("drop_path", 0.0),
|
164 |
+
num_register_tokens=config.get("num_register_tokens", 0),
|
165 |
+
**kwargs,
|
166 |
+
)
|
167 |
+
return vit
|
168 |
+
|
169 |
+
|
170 |
+
def dinov2_vitg14(config, pretrained: bool = True, **kwargs):
|
171 |
+
"""
|
172 |
+
DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset.
|
173 |
+
"""
|
174 |
+
vit = _make_dinov2_model(
|
175 |
+
arch_name="vit_giant2",
|
176 |
+
ffn_layer="swiglufused",
|
177 |
+
pretrained=pretrained,
|
178 |
+
output_idx=config.get("output_idx", [10, 20, 30, 40]),
|
179 |
+
checkpoint=config.get("use_checkpoint", False),
|
180 |
+
drop_path_rate=config.get("drop_path", 0.0),
|
181 |
+
num_register_tokens=config.get("num_register_tokens", 0),
|
182 |
+
**kwargs,
|
183 |
+
)
|
184 |
+
return vit
|
flash3d/unidepth/models/unidepthv1/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .unidepthv1 import UniDepthV1
|
2 |
+
|
3 |
+
__all__ = [
|
4 |
+
"UniDepthV1",
|
5 |
+
]
|
flash3d/unidepth/models/unidepthv1/decoder.py
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Luigi Piccinelli
|
3 |
+
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
|
4 |
+
"""
|
5 |
+
|
6 |
+
from typing import List, Tuple
|
7 |
+
|
8 |
+
from einops import rearrange
|
9 |
+
from timm.models.layers import trunc_normal_
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
from unidepth.layers import (
|
15 |
+
MLP,
|
16 |
+
AttentionBlock,
|
17 |
+
NystromBlock,
|
18 |
+
PositionEmbeddingSine,
|
19 |
+
ConvUpsample,
|
20 |
+
)
|
21 |
+
from unidepth.utils.sht import rsh_cart_8
|
22 |
+
from unidepth.utils.geometric import (
|
23 |
+
generate_rays,
|
24 |
+
flat_interpolate,
|
25 |
+
)
|
26 |
+
from unidepth.utils.misc import max_stack
|
27 |
+
|
28 |
+
|
29 |
+
class ListAdapter(nn.Module):
|
30 |
+
def __init__(self, input_dims: List[int], hidden_dim: int):
|
31 |
+
super().__init__()
|
32 |
+
self.input_adapters = nn.ModuleList([])
|
33 |
+
self.num_chunks = len(input_dims)
|
34 |
+
for input_dim in input_dims:
|
35 |
+
self.input_adapters.append(
|
36 |
+
nn.Sequential(
|
37 |
+
nn.LayerNorm(input_dim), nn.Linear(input_dim, hidden_dim), nn.GELU()
|
38 |
+
)
|
39 |
+
)
|
40 |
+
|
41 |
+
def forward(self, x: torch.Tensor, splits: torch.Tensor) -> torch.Tensor:
|
42 |
+
xs = torch.split(x, splits.int().tolist(), dim=-1)
|
43 |
+
xs = [adapter(x) for x, adapter in zip(xs, self.input_adapters)]
|
44 |
+
return torch.cat(xs, dim=-1)
|
45 |
+
|
46 |
+
|
47 |
+
class CameraHead(nn.Module):
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
input_dim: int,
|
51 |
+
hidden_dim: int,
|
52 |
+
num_heads: int = 8,
|
53 |
+
expansion: int = 4,
|
54 |
+
depth: int = 4,
|
55 |
+
dropout: float = 0.0,
|
56 |
+
layer_scale: float = 1.0,
|
57 |
+
**kwargs,
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
self.aggregate = AttentionBlock(
|
62 |
+
hidden_dim,
|
63 |
+
num_heads=1,
|
64 |
+
expansion=expansion,
|
65 |
+
dropout=dropout,
|
66 |
+
layer_scale=layer_scale,
|
67 |
+
)
|
68 |
+
self.latents_pos = nn.Parameter(
|
69 |
+
torch.randn(1, 4, hidden_dim), requires_grad=True
|
70 |
+
)
|
71 |
+
self.layers = nn.ModuleList([])
|
72 |
+
self.in_features = MLP(hidden_dim, expansion=2, dropout=dropout)
|
73 |
+
for _ in range(depth):
|
74 |
+
blk = AttentionBlock(
|
75 |
+
hidden_dim,
|
76 |
+
num_heads=num_heads,
|
77 |
+
expansion=expansion,
|
78 |
+
dropout=dropout,
|
79 |
+
layer_scale=layer_scale,
|
80 |
+
)
|
81 |
+
self.layers.append(blk)
|
82 |
+
self.out = MLP(hidden_dim, expansion=2, dropout=0.0, output_dim=1)
|
83 |
+
self.cls_project = nn.Sequential(
|
84 |
+
nn.LayerNorm(input_dim),
|
85 |
+
nn.Linear(input_dim, hidden_dim // 2),
|
86 |
+
nn.GELU(),
|
87 |
+
nn.Linear(hidden_dim // 2, hidden_dim),
|
88 |
+
)
|
89 |
+
|
90 |
+
def forward(self, features, cls_tokens, pos_embed) -> torch.Tensor:
|
91 |
+
features = features.unbind(dim=-1)
|
92 |
+
cls_tokens = self.cls_project(cls_tokens)
|
93 |
+
features_stack = torch.cat(features, dim=1)
|
94 |
+
features_stack = features_stack + pos_embed
|
95 |
+
latents_pos = self.latents_pos.expand(cls_tokens.shape[0], -1, -1)
|
96 |
+
features_stack = self.in_features(features_stack)
|
97 |
+
features = torch.cat((features_stack, cls_tokens), dim=1)
|
98 |
+
cls_tokens = self.aggregate(cls_tokens, context=features, pos_embed=latents_pos)
|
99 |
+
for i, layer in enumerate(self.layers):
|
100 |
+
cls_tokens = layer(cls_tokens, pos_embed=latents_pos)
|
101 |
+
|
102 |
+
# project
|
103 |
+
x = self.out(cls_tokens).squeeze(-1)
|
104 |
+
camera_intrinsics = torch.zeros(
|
105 |
+
x.shape[0], 3, 3, device=x.device, requires_grad=False
|
106 |
+
)
|
107 |
+
camera_intrinsics[:, 0, 0] = x[:, 0].exp()
|
108 |
+
camera_intrinsics[:, 1, 1] = x[:, 1].exp()
|
109 |
+
camera_intrinsics[:, 0, 2] = x[:, 2].sigmoid()
|
110 |
+
camera_intrinsics[:, 1, 2] = x[:, 3].sigmoid()
|
111 |
+
camera_intrinsics[:, 2, 2] = 1.0
|
112 |
+
return camera_intrinsics
|
113 |
+
|
114 |
+
def set_shapes(self, shapes: Tuple[int, int]):
|
115 |
+
self.shapes = shapes
|
116 |
+
|
117 |
+
|
118 |
+
class DepthHead(nn.Module):
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
hidden_dim: int,
|
122 |
+
num_heads: int = 8,
|
123 |
+
expansion: int = 4,
|
124 |
+
depths: int | list[int] = 4,
|
125 |
+
camera_dim: int = 256,
|
126 |
+
num_resolutions: int = 4,
|
127 |
+
dropout: float = 0.0,
|
128 |
+
layer_scale: float = 1.0,
|
129 |
+
**kwargs,
|
130 |
+
) -> None:
|
131 |
+
super().__init__()
|
132 |
+
if isinstance(depths, int):
|
133 |
+
depths = [depths] * 3
|
134 |
+
assert len(depths) == 3
|
135 |
+
|
136 |
+
self.project_rays16 = MLP(
|
137 |
+
camera_dim, expansion=expansion, dropout=dropout, output_dim=hidden_dim
|
138 |
+
)
|
139 |
+
self.project_rays8 = MLP(
|
140 |
+
camera_dim, expansion=expansion, dropout=dropout, output_dim=hidden_dim // 2
|
141 |
+
)
|
142 |
+
self.project_rays4 = MLP(
|
143 |
+
camera_dim, expansion=expansion, dropout=dropout, output_dim=hidden_dim // 4
|
144 |
+
)
|
145 |
+
self.to_latents = MLP(hidden_dim, expansion=2, dropout=dropout)
|
146 |
+
|
147 |
+
self.features_channel_cat = nn.Linear(hidden_dim * num_resolutions, hidden_dim)
|
148 |
+
|
149 |
+
self.up8 = ConvUpsample(
|
150 |
+
hidden_dim, expansion=expansion, layer_scale=layer_scale
|
151 |
+
)
|
152 |
+
self.up4 = ConvUpsample(
|
153 |
+
hidden_dim // 2, expansion=expansion, layer_scale=layer_scale
|
154 |
+
)
|
155 |
+
self.up2 = ConvUpsample(
|
156 |
+
hidden_dim // 4, expansion=expansion, layer_scale=layer_scale
|
157 |
+
)
|
158 |
+
|
159 |
+
self.layers_16 = nn.ModuleList([])
|
160 |
+
self.layers_8 = nn.ModuleList([])
|
161 |
+
self.layers_4 = nn.ModuleList([])
|
162 |
+
self.aggregate_16 = AttentionBlock(
|
163 |
+
hidden_dim,
|
164 |
+
num_heads=1,
|
165 |
+
expansion=expansion,
|
166 |
+
dropout=dropout,
|
167 |
+
layer_scale=layer_scale,
|
168 |
+
context_dim=hidden_dim,
|
169 |
+
)
|
170 |
+
self.prompt_camera = AttentionBlock(
|
171 |
+
hidden_dim,
|
172 |
+
num_heads=1,
|
173 |
+
expansion=expansion,
|
174 |
+
dropout=dropout,
|
175 |
+
layer_scale=layer_scale,
|
176 |
+
context_dim=hidden_dim,
|
177 |
+
)
|
178 |
+
for i, (blk_lst, depth) in enumerate(
|
179 |
+
zip([self.layers_16, self.layers_8, self.layers_4], depths)
|
180 |
+
):
|
181 |
+
attn_cls = AttentionBlock if i == 0 else NystromBlock
|
182 |
+
for _ in range(depth):
|
183 |
+
blk_lst.append(
|
184 |
+
attn_cls(
|
185 |
+
hidden_dim // (2**i),
|
186 |
+
num_heads=num_heads // (2**i),
|
187 |
+
expansion=expansion,
|
188 |
+
dropout=dropout,
|
189 |
+
layer_scale=layer_scale,
|
190 |
+
)
|
191 |
+
)
|
192 |
+
|
193 |
+
self.out2 = nn.Conv2d(hidden_dim // 8, 1, 3, padding=1)
|
194 |
+
self.out4 = nn.Conv2d(hidden_dim // 4, 1, 3, padding=1)
|
195 |
+
self.out8 = nn.Conv2d(hidden_dim // 2, 1, 3, padding=1)
|
196 |
+
|
197 |
+
def set_original_shapes(self, shapes: Tuple[int, int]):
|
198 |
+
self.original_shapes = shapes
|
199 |
+
|
200 |
+
def set_shapes(self, shapes: Tuple[int, int]):
|
201 |
+
self.shapes = shapes
|
202 |
+
|
203 |
+
def forward(
|
204 |
+
self, features: torch.Tensor, rays_hr: torch.Tensor, pos_embed, level_embed
|
205 |
+
) -> torch.Tensor:
|
206 |
+
features = features.unbind(dim=-1)
|
207 |
+
shapes = self.shapes
|
208 |
+
|
209 |
+
# camera_embedding
|
210 |
+
# torch.cuda.synchronize()
|
211 |
+
# start = time()
|
212 |
+
rays_embedding_16 = F.normalize(
|
213 |
+
flat_interpolate(rays_hr, old=self.original_shapes, new=shapes), dim=-1
|
214 |
+
)
|
215 |
+
rays_embedding_8 = F.normalize(
|
216 |
+
flat_interpolate(
|
217 |
+
rays_hr, old=self.original_shapes, new=[x * 2 for x in shapes]
|
218 |
+
),
|
219 |
+
dim=-1,
|
220 |
+
)
|
221 |
+
rays_embedding_4 = F.normalize(
|
222 |
+
flat_interpolate(
|
223 |
+
rays_hr, old=self.original_shapes, new=[x * 4 for x in shapes]
|
224 |
+
),
|
225 |
+
dim=-1,
|
226 |
+
)
|
227 |
+
rays_embedding_16 = self.project_rays16(rsh_cart_8(rays_embedding_16))
|
228 |
+
rays_embedding_8 = self.project_rays8(rsh_cart_8(rays_embedding_8))
|
229 |
+
rays_embedding_4 = self.project_rays4(rsh_cart_8(rays_embedding_4))
|
230 |
+
# torch.cuda.synchronize()
|
231 |
+
# print(f"camera_embedding took {time() - start} seconds")
|
232 |
+
features_tokens = torch.cat(features, dim=1)
|
233 |
+
features_tokens_pos = pos_embed + level_embed
|
234 |
+
|
235 |
+
# Generate latents with init as pooled features
|
236 |
+
features_channels = torch.cat(features, dim=-1)
|
237 |
+
features_16 = self.features_channel_cat(features_channels)
|
238 |
+
latents_16 = self.to_latents(
|
239 |
+
flat_interpolate(features_16, old=self.shapes, new=shapes, antialias=False)
|
240 |
+
)
|
241 |
+
|
242 |
+
# Aggregate features: F -> D
|
243 |
+
latents_16 = self.aggregate_16(
|
244 |
+
latents_16, context=features_tokens, pos_embed_context=features_tokens_pos
|
245 |
+
)
|
246 |
+
|
247 |
+
# Aggregate camera: D- > D|E
|
248 |
+
latents_16 = self.prompt_camera(latents_16, context=rays_embedding_16)
|
249 |
+
|
250 |
+
# Block 16 - Out 8
|
251 |
+
for layer in self.layers_16:
|
252 |
+
latents_16 = layer(latents_16, pos_embed=rays_embedding_16)
|
253 |
+
latents_8 = self.up8(
|
254 |
+
rearrange(
|
255 |
+
latents_16 + rays_embedding_16,
|
256 |
+
"b (h w) c -> b c h w",
|
257 |
+
h=shapes[0],
|
258 |
+
w=shapes[1],
|
259 |
+
).contiguous()
|
260 |
+
)
|
261 |
+
out8 = self.out8(
|
262 |
+
rearrange(
|
263 |
+
latents_8, "b (h w) c -> b c h w", h=shapes[0] * 2, w=shapes[1] * 2
|
264 |
+
)
|
265 |
+
)
|
266 |
+
|
267 |
+
# Block 8 - Out 4
|
268 |
+
for layer in self.layers_8:
|
269 |
+
latents_8 = layer(latents_8, pos_embed=rays_embedding_8)
|
270 |
+
latents_4 = self.up4(
|
271 |
+
rearrange(
|
272 |
+
latents_8 + rays_embedding_8,
|
273 |
+
"b (h w) c -> b c h w",
|
274 |
+
h=shapes[0] * 2,
|
275 |
+
w=shapes[1] * 2,
|
276 |
+
).contiguous()
|
277 |
+
)
|
278 |
+
out4 = self.out4(
|
279 |
+
rearrange(
|
280 |
+
latents_4, "b (h w) c -> b c h w", h=shapes[0] * 4, w=shapes[1] * 4
|
281 |
+
)
|
282 |
+
)
|
283 |
+
|
284 |
+
# Block 4 - Out 2
|
285 |
+
for layer in self.layers_4:
|
286 |
+
latents_4 = layer(latents_4, pos_embed=rays_embedding_4)
|
287 |
+
latents_2 = self.up2(
|
288 |
+
rearrange(
|
289 |
+
latents_4 + rays_embedding_4,
|
290 |
+
"b (h w) c -> b c h w",
|
291 |
+
h=shapes[0] * 4,
|
292 |
+
w=shapes[1] * 4,
|
293 |
+
).contiguous()
|
294 |
+
)
|
295 |
+
out2 = self.out2(
|
296 |
+
rearrange(
|
297 |
+
latents_2, "b (h w) c -> b c h w", h=shapes[0] * 8, w=shapes[1] * 8
|
298 |
+
)
|
299 |
+
)
|
300 |
+
|
301 |
+
# Depth features
|
302 |
+
proj_latents_16 = rearrange(
|
303 |
+
latents_16, "b (h w) c -> b c h w", h=shapes[0], w=shapes[1]
|
304 |
+
).contiguous()
|
305 |
+
|
306 |
+
# MS Outputs
|
307 |
+
out2 = out2.clamp(-10.0, 10.0).exp()
|
308 |
+
out4 = out4.clamp(-10.0, 10.0).exp()
|
309 |
+
out8 = out8.clamp(-10.0, 10.0).exp()
|
310 |
+
|
311 |
+
return out8, out4, out2, proj_latents_16
|
312 |
+
|
313 |
+
|
314 |
+
class Decoder(nn.Module):
|
315 |
+
def __init__(
|
316 |
+
self,
|
317 |
+
config,
|
318 |
+
*args,
|
319 |
+
**kwargs,
|
320 |
+
):
|
321 |
+
super().__init__()
|
322 |
+
self.build(config)
|
323 |
+
self.apply(self._init_weights)
|
324 |
+
self.test_fixed_camera = False
|
325 |
+
self.skip_camera = False
|
326 |
+
|
327 |
+
def _init_weights(self, m):
|
328 |
+
if isinstance(m, nn.Linear):
|
329 |
+
trunc_normal_(m.weight, std=0.02)
|
330 |
+
if m.bias is not None:
|
331 |
+
nn.init.constant_(m.bias, 0)
|
332 |
+
elif isinstance(m, nn.Conv2d):
|
333 |
+
trunc_normal_(m.weight, std=0.02)
|
334 |
+
if m.bias is not None:
|
335 |
+
nn.init.constant_(m.bias, 0)
|
336 |
+
elif isinstance(m, nn.LayerNorm):
|
337 |
+
nn.init.constant_(m.bias, 0)
|
338 |
+
nn.init.constant_(m.weight, 1.0)
|
339 |
+
|
340 |
+
def get_adapted_features(self, features_flat, splits):
|
341 |
+
features_flat_cat = torch.cat(features_flat, dim=-1)
|
342 |
+
features_projected = self.input_adapter(
|
343 |
+
features_flat_cat, splits
|
344 |
+
) # list [b hw c] shapes
|
345 |
+
features = torch.chunk(features_projected, len(splits), dim=-1)
|
346 |
+
return features
|
347 |
+
|
348 |
+
def run_camera(self, cls_tokens, features, pos_embed, original_shapes, rays):
|
349 |
+
# get cls tokens projections
|
350 |
+
cls_tokens_splits = torch.tensor(
|
351 |
+
[x.shape[-1] for x in cls_tokens],
|
352 |
+
device=features.device,
|
353 |
+
requires_grad=False,
|
354 |
+
dtype=features.dtype,
|
355 |
+
)
|
356 |
+
cls_tokens = torch.cat(cls_tokens, dim=-1)
|
357 |
+
cls_tokens = self.token_adapter(cls_tokens, cls_tokens_splits)
|
358 |
+
cls_tokens = torch.cat(
|
359 |
+
torch.chunk(cls_tokens, len(cls_tokens_splits), dim=-1), dim=1
|
360 |
+
)
|
361 |
+
|
362 |
+
# camera layer
|
363 |
+
intrinsics = self.camera_layer(
|
364 |
+
features=features, cls_tokens=cls_tokens, pos_embed=pos_embed
|
365 |
+
)
|
366 |
+
intrinsics[:, 0, 0] = max(original_shapes) / 2 * intrinsics[:, 0, 0]
|
367 |
+
intrinsics[:, 1, 1] = max(original_shapes) / 2 * intrinsics[:, 1, 1]
|
368 |
+
intrinsics[:, 0, 2] = intrinsics[:, 0, 2] * original_shapes[1]
|
369 |
+
intrinsics[:, 1, 2] = intrinsics[:, 1, 2] * original_shapes[0]
|
370 |
+
if not self.test_fixed_camera:
|
371 |
+
rays, _ = generate_rays(intrinsics, original_shapes, noisy=False)
|
372 |
+
|
373 |
+
return intrinsics, rays
|
374 |
+
|
375 |
+
def forward(self, inputs, image_metas) -> torch.Tensor:
|
376 |
+
B, _, H, W = inputs["image"].shape
|
377 |
+
device = inputs["image"].device
|
378 |
+
|
379 |
+
# make stride happy?
|
380 |
+
original_encoder_outputs = [x.contiguous() for x in inputs["encoder_outputs"]]
|
381 |
+
cls_tokens = [x.contiguous() for x in inputs["cls_tokens"]]
|
382 |
+
|
383 |
+
# collect features and tokens
|
384 |
+
original_encoder_outputs = [
|
385 |
+
max_stack(original_encoder_outputs[i:j])
|
386 |
+
for i, j in self.slices_encoder_range
|
387 |
+
]
|
388 |
+
cls_tokens = [cls_tokens[-i - 1] for i in range(len(self.slices_encoder_range))]
|
389 |
+
|
390 |
+
# get features in b n d format
|
391 |
+
# level shapes, the shape per level, for swin like [[128, 128], [64, 64],...], for vit [[32,32]] -> mult times resolutions
|
392 |
+
resolutions = [
|
393 |
+
tuple(sorted([x.shape[1], x.shape[2]])) for x in original_encoder_outputs
|
394 |
+
]
|
395 |
+
level_shapes = sorted(list(set(resolutions)))[::-1]
|
396 |
+
|
397 |
+
if len(level_shapes) == 1:
|
398 |
+
level_shapes = level_shapes * self.num_resolutions
|
399 |
+
input_shapes = [
|
400 |
+
level_shapes[i]
|
401 |
+
for i, (start, end) in enumerate(self.slices_encoder)
|
402 |
+
for _ in range(end - start)
|
403 |
+
]
|
404 |
+
common_shape = level_shapes[-2]
|
405 |
+
|
406 |
+
# input shapes repeat shapes for each level, times the amount of the layers:
|
407 |
+
features_flat = [
|
408 |
+
flat_interpolate(
|
409 |
+
rearrange(x, "b h w c -> b (h w) c"), old=input_shape, new=common_shape
|
410 |
+
)
|
411 |
+
for x, input_shape in zip(original_encoder_outputs, input_shapes)
|
412 |
+
]
|
413 |
+
features_splits = torch.tensor(
|
414 |
+
[x.shape[-1] for x in features_flat],
|
415 |
+
device=device,
|
416 |
+
requires_grad=False,
|
417 |
+
dtype=torch.float32,
|
418 |
+
)
|
419 |
+
|
420 |
+
# input adapter, then do mean of features in same blocks
|
421 |
+
features = self.get_adapted_features(features_flat, features_splits)
|
422 |
+
features = torch.stack(features, dim=-1)
|
423 |
+
|
424 |
+
# positional embeddings, spatial and level
|
425 |
+
level_embed = torch.cat(
|
426 |
+
[
|
427 |
+
self.level_embed_layer(self.level_embeds)[i : i + 1]
|
428 |
+
.unsqueeze(0)
|
429 |
+
.repeat(B, common_shape[0] * common_shape[1], 1)
|
430 |
+
for i in range(self.num_resolutions)
|
431 |
+
],
|
432 |
+
dim=1,
|
433 |
+
)
|
434 |
+
pos_embed = self.pos_embed(
|
435 |
+
torch.zeros(
|
436 |
+
B,
|
437 |
+
1,
|
438 |
+
common_shape[0],
|
439 |
+
common_shape[1],
|
440 |
+
device=device,
|
441 |
+
requires_grad=False,
|
442 |
+
)
|
443 |
+
)
|
444 |
+
pos_embed = rearrange(pos_embed, "b c h w -> b (h w) c").repeat(
|
445 |
+
1, self.num_resolutions, 1
|
446 |
+
)
|
447 |
+
|
448 |
+
self.camera_layer.set_shapes(common_shape)
|
449 |
+
intrinsics, rays = (
|
450 |
+
self.run_camera(
|
451 |
+
cls_tokens,
|
452 |
+
features=features,
|
453 |
+
pos_embed=pos_embed + level_embed,
|
454 |
+
original_shapes=(H, W),
|
455 |
+
rays=inputs.get("rays", None),
|
456 |
+
)
|
457 |
+
if not self.skip_camera
|
458 |
+
else (inputs["K"], inputs["rays"])
|
459 |
+
)
|
460 |
+
|
461 |
+
# run bulk of the model
|
462 |
+
self.depth_layer.set_shapes(common_shape)
|
463 |
+
self.depth_layer.set_original_shapes((H, W))
|
464 |
+
out8, out4, out2, depth_features = self.depth_layer(
|
465 |
+
features=features,
|
466 |
+
rays_hr=rays,
|
467 |
+
pos_embed=pos_embed,
|
468 |
+
level_embed=level_embed,
|
469 |
+
)
|
470 |
+
|
471 |
+
return intrinsics, [out8, out4, out2], depth_features, rays
|
472 |
+
|
473 |
+
@torch.jit.ignore
|
474 |
+
def no_weight_decay_keywords(self):
|
475 |
+
return {"latents_pos", "level_embeds"}
|
476 |
+
|
477 |
+
def build(self, config):
|
478 |
+
depth = config["model"]["pixel_decoder"]["depths"]
|
479 |
+
input_dims = config["model"]["pixel_encoder"]["embed_dims"]
|
480 |
+
hidden_dim = config["model"]["pixel_decoder"]["hidden_dim"]
|
481 |
+
num_heads = config["model"]["num_heads"]
|
482 |
+
expansion = config["model"]["expansion"]
|
483 |
+
dropout = config["model"]["pixel_decoder"]["dropout"]
|
484 |
+
depths_encoder = config["model"]["pixel_encoder"]["depths"]
|
485 |
+
num_steps = config["model"].get("num_steps", 100000)
|
486 |
+
layer_scale = 1.0
|
487 |
+
|
488 |
+
self.depth = depth
|
489 |
+
self.dim = hidden_dim
|
490 |
+
self.downsample = 4
|
491 |
+
self.num_heads = num_heads
|
492 |
+
self.num_resolutions = len(depths_encoder)
|
493 |
+
self.depths_encoder = depths_encoder
|
494 |
+
|
495 |
+
self.slices_encoder_single = list(
|
496 |
+
zip([d - 1 for d in self.depths_encoder], self.depths_encoder)
|
497 |
+
)
|
498 |
+
self.slices_encoder_range = list(
|
499 |
+
zip([0, *self.depths_encoder[:-1]], self.depths_encoder)
|
500 |
+
)
|
501 |
+
cls_token_input_dims = [input_dims[-i - 1] for i in range(len(depths_encoder))]
|
502 |
+
|
503 |
+
input_dims = [input_dims[d - 1] for d in depths_encoder]
|
504 |
+
self.slices_encoder = self.slices_encoder_single
|
505 |
+
|
506 |
+
# adapt from encoder features, just project
|
507 |
+
self.input_adapter = ListAdapter(input_dims, hidden_dim)
|
508 |
+
self.token_adapter = ListAdapter(cls_token_input_dims, hidden_dim)
|
509 |
+
|
510 |
+
# camera layer
|
511 |
+
self.camera_layer = CameraHead(
|
512 |
+
input_dim=hidden_dim,
|
513 |
+
hidden_dim=hidden_dim,
|
514 |
+
num_heads=num_heads,
|
515 |
+
expansion=expansion,
|
516 |
+
depth=2,
|
517 |
+
dropout=dropout,
|
518 |
+
layer_scale=layer_scale,
|
519 |
+
)
|
520 |
+
|
521 |
+
self.depth_layer = DepthHead(
|
522 |
+
hidden_dim=hidden_dim,
|
523 |
+
num_heads=num_heads,
|
524 |
+
expansion=expansion,
|
525 |
+
depths=depth,
|
526 |
+
dropout=dropout,
|
527 |
+
camera_dim=81,
|
528 |
+
num_resolutions=self.num_resolutions,
|
529 |
+
layer_scale=layer_scale,
|
530 |
+
)
|
531 |
+
|
532 |
+
# transformer part
|
533 |
+
self.pos_embed = PositionEmbeddingSine(hidden_dim // 2, normalize=True)
|
534 |
+
self.level_embeds = nn.Parameter(
|
535 |
+
torch.randn(len(input_dims), hidden_dim), requires_grad=True
|
536 |
+
)
|
537 |
+
self.level_embed_layer = nn.Sequential(
|
538 |
+
nn.Linear(hidden_dim, hidden_dim),
|
539 |
+
nn.GELU(),
|
540 |
+
nn.Linear(hidden_dim, hidden_dim),
|
541 |
+
nn.LayerNorm(hidden_dim),
|
542 |
+
)
|
flash3d/unidepth/models/unidepthv1/unidepthv1.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Luigi Piccinelli
|
3 |
+
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
|
4 |
+
"""
|
5 |
+
|
6 |
+
from copy import deepcopy
|
7 |
+
import importlib
|
8 |
+
from typing import Any, Dict, Tuple
|
9 |
+
from math import ceil
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
import torchvision.transforms.functional as TF
|
15 |
+
from einops import rearrange
|
16 |
+
|
17 |
+
from unidepth.utils.geometric import (
|
18 |
+
generate_rays,
|
19 |
+
spherical_zbuffer_to_euclidean,
|
20 |
+
)
|
21 |
+
from unidepth.utils.misc import get_params
|
22 |
+
from unidepth.utils.distributed import is_main_process
|
23 |
+
from unidepth.utils.constants import IMAGENET_DATASET_MEAN, IMAGENET_DATASET_STD
|
24 |
+
from unidepth.models.unidepthv1.decoder import Decoder
|
25 |
+
|
26 |
+
from huggingface_hub import PyTorchModelHubMixin
|
27 |
+
|
28 |
+
|
29 |
+
MAP_BACKBONES = {"ViTL14": "vitl14", "ConvNextL": "cnvnxtl"}
|
30 |
+
|
31 |
+
|
32 |
+
# inference helpers
|
33 |
+
def _paddings(image_shape, network_shape):
|
34 |
+
cur_h, cur_w = image_shape
|
35 |
+
h, w = network_shape
|
36 |
+
pad_top, pad_bottom = (h - cur_h) // 2, h - cur_h - (h - cur_h) // 2
|
37 |
+
pad_left, pad_right = (w - cur_w) // 2, w - cur_w - (w - cur_w) // 2
|
38 |
+
return pad_left, pad_right, pad_top, pad_bottom
|
39 |
+
|
40 |
+
|
41 |
+
def _shapes(image_shape, network_shape):
|
42 |
+
h, w = image_shape
|
43 |
+
input_ratio = w / h
|
44 |
+
output_ratio = network_shape[1] / network_shape[0]
|
45 |
+
if output_ratio > input_ratio:
|
46 |
+
ratio = network_shape[0] / h
|
47 |
+
elif output_ratio <= input_ratio:
|
48 |
+
ratio = network_shape[1] / w
|
49 |
+
return (ceil(h * ratio - 0.5), ceil(w * ratio - 0.5)), ratio
|
50 |
+
|
51 |
+
|
52 |
+
def _preprocess(rgbs, intrinsics, shapes, pads, ratio, output_shapes):
|
53 |
+
(pad_left, pad_right, pad_top, pad_bottom) = pads
|
54 |
+
rgbs = F.interpolate(
|
55 |
+
rgbs, size=shapes, mode="bilinear", align_corners=False, antialias=True
|
56 |
+
)
|
57 |
+
rgbs = F.pad(rgbs, (pad_left, pad_right, pad_top, pad_bottom), mode="constant")
|
58 |
+
if intrinsics is not None:
|
59 |
+
intrinsics = intrinsics.clone()
|
60 |
+
intrinsics[:, 0, 0] = intrinsics[:, 0, 0] * ratio
|
61 |
+
intrinsics[:, 1, 1] = intrinsics[:, 1, 1] * ratio
|
62 |
+
intrinsics[:, 0, 2] = intrinsics[:, 0, 2] * ratio + pad_left
|
63 |
+
intrinsics[:, 1, 2] = intrinsics[:, 1, 2] * ratio + pad_top
|
64 |
+
return rgbs, intrinsics
|
65 |
+
return rgbs, None
|
66 |
+
|
67 |
+
|
68 |
+
def _postprocess(predictions, intrinsics, shapes, pads, ratio, original_shapes):
|
69 |
+
(pad_left, pad_right, pad_top, pad_bottom) = pads
|
70 |
+
# pred mean, trim paddings, and upsample to input dim
|
71 |
+
predictions = sum(
|
72 |
+
[
|
73 |
+
F.interpolate(
|
74 |
+
x.clone(),
|
75 |
+
size=shapes,
|
76 |
+
mode="bilinear",
|
77 |
+
align_corners=False,
|
78 |
+
antialias=True,
|
79 |
+
)
|
80 |
+
for x in predictions
|
81 |
+
]
|
82 |
+
) / len(predictions)
|
83 |
+
predictions = predictions[
|
84 |
+
..., pad_top : shapes[0] - pad_bottom, pad_left : shapes[1] - pad_right
|
85 |
+
]
|
86 |
+
predictions = F.interpolate(
|
87 |
+
predictions,
|
88 |
+
size=original_shapes,
|
89 |
+
mode="bilinear",
|
90 |
+
align_corners=False,
|
91 |
+
antialias=True,
|
92 |
+
)
|
93 |
+
intrinsics[:, 0, 0] = intrinsics[:, 0, 0] / ratio
|
94 |
+
intrinsics[:, 1, 1] = intrinsics[:, 1, 1] / ratio
|
95 |
+
intrinsics[:, 0, 2] = (intrinsics[:, 0, 2] - pad_left) / ratio
|
96 |
+
intrinsics[:, 1, 2] = (intrinsics[:, 1, 2] - pad_top) / ratio
|
97 |
+
return predictions, intrinsics
|
98 |
+
|
99 |
+
|
100 |
+
class UniDepthV1(nn.Module,
|
101 |
+
PyTorchModelHubMixin,
|
102 |
+
library_name="UniDepth",
|
103 |
+
repo_url="https://github.com/lpiccinelli-eth/UniDepth",
|
104 |
+
tags=["monocular-metric-depth-estimation"]):
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
config,
|
108 |
+
eps: float = 1e-6,
|
109 |
+
**kwargs,
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
self.build(config)
|
113 |
+
self.eps = eps
|
114 |
+
|
115 |
+
def forward(self, inputs, image_metas):
|
116 |
+
rgbs = inputs["image"]
|
117 |
+
gt_intrinsics = inputs.get("K")
|
118 |
+
H, W = rgbs.shape[-2:]
|
119 |
+
|
120 |
+
# Encode
|
121 |
+
encoder_outputs, cls_tokens = self.pixel_encoder(rgbs)
|
122 |
+
if "dino" in self.pixel_encoder.__class__.__name__.lower():
|
123 |
+
encoder_outputs = [
|
124 |
+
(x + y.unsqueeze(1)).contiguous()
|
125 |
+
for x, y in zip(encoder_outputs, cls_tokens)
|
126 |
+
]
|
127 |
+
inputs["encoder_outputs"] = encoder_outputs
|
128 |
+
inputs["cls_tokens"] = cls_tokens
|
129 |
+
|
130 |
+
# Get camera infos, if any
|
131 |
+
if gt_intrinsics is not None:
|
132 |
+
rays, angles = generate_rays(
|
133 |
+
gt_intrinsics, self.image_shape, noisy=self.training
|
134 |
+
)
|
135 |
+
inputs["rays"] = rays
|
136 |
+
inputs["angles"] = angles
|
137 |
+
inputs["K"] = gt_intrinsics
|
138 |
+
self.pixel_decoder.test_fixed_camera = True # use GT camera in fwd
|
139 |
+
|
140 |
+
# Decode
|
141 |
+
pred_intrinsics, predictions, _, _ = self.pixel_decoder(inputs, {})
|
142 |
+
predictions = sum(
|
143 |
+
[
|
144 |
+
F.interpolate(
|
145 |
+
x.clone(),
|
146 |
+
size=self.image_shape,
|
147 |
+
mode="bilinear",
|
148 |
+
align_corners=False,
|
149 |
+
antialias=True,
|
150 |
+
)
|
151 |
+
for x in predictions
|
152 |
+
]
|
153 |
+
) / len(predictions)
|
154 |
+
|
155 |
+
# Final 3D points backprojection
|
156 |
+
pred_angles = generate_rays(pred_intrinsics, (H, W), noisy=False)[-1]
|
157 |
+
# You may want to use inputs["angles"] if available?
|
158 |
+
pred_angles = rearrange(pred_angles, "b (h w) c -> b c h w", h=H, w=W)
|
159 |
+
points_3d = torch.cat((pred_angles, predictions), dim=1)
|
160 |
+
points_3d = spherical_zbuffer_to_euclidean(
|
161 |
+
points_3d.permute(0, 2, 3, 1)
|
162 |
+
).permute(0, 3, 1, 2)
|
163 |
+
|
164 |
+
# Output data, use for loss computation
|
165 |
+
outputs = {
|
166 |
+
"angles": pred_angles,
|
167 |
+
"intrinsics": pred_intrinsics,
|
168 |
+
"points": points_3d,
|
169 |
+
"depth": predictions[:, -1:],
|
170 |
+
}
|
171 |
+
self.pixel_decoder.test_fixed_camera = False
|
172 |
+
return outputs
|
173 |
+
|
174 |
+
@torch.no_grad()
|
175 |
+
def infer(self, rgbs: torch.Tensor, intrinsics=None, skip_camera=False):
|
176 |
+
if rgbs.ndim == 3:
|
177 |
+
rgbs = rgbs.unsqueeze(0)
|
178 |
+
if intrinsics is not None and intrinsics.ndim == 2:
|
179 |
+
intrinsics = intrinsics.unsqueeze(0)
|
180 |
+
B, _, H, W = rgbs.shape
|
181 |
+
|
182 |
+
rgbs = rgbs.to(self.device)
|
183 |
+
if intrinsics is not None:
|
184 |
+
intrinsics = intrinsics.to(self.device)
|
185 |
+
|
186 |
+
# process image and intrinsiscs (if any) to match network input (slow?)
|
187 |
+
if rgbs.max() > 5 or rgbs.dtype == torch.uint8:
|
188 |
+
rgbs = TF.normalize(
|
189 |
+
rgbs.to(torch.float32).div(255),
|
190 |
+
mean=IMAGENET_DATASET_MEAN,
|
191 |
+
std=IMAGENET_DATASET_STD,
|
192 |
+
)
|
193 |
+
else:
|
194 |
+
pass
|
195 |
+
# print("Image not normalized, was it already normalized?")
|
196 |
+
(h, w), ratio = _shapes((H, W), self.image_shape)
|
197 |
+
pad_left, pad_right, pad_top, pad_bottom = _paddings((h, w), self.image_shape)
|
198 |
+
rgbs, gt_intrinsics = _preprocess(
|
199 |
+
rgbs,
|
200 |
+
intrinsics,
|
201 |
+
(h, w),
|
202 |
+
(pad_left, pad_right, pad_top, pad_bottom),
|
203 |
+
ratio,
|
204 |
+
self.image_shape,
|
205 |
+
)
|
206 |
+
|
207 |
+
# run encoder
|
208 |
+
encoder_outputs, cls_tokens = self.pixel_encoder(rgbs)
|
209 |
+
if "dino" in self.pixel_encoder.__class__.__name__.lower():
|
210 |
+
encoder_outputs = [
|
211 |
+
(x + y.unsqueeze(1)).contiguous()
|
212 |
+
for x, y in zip(encoder_outputs, cls_tokens)
|
213 |
+
]
|
214 |
+
|
215 |
+
# get data for decoder and adapt to given camera
|
216 |
+
inputs = {}
|
217 |
+
inputs["encoder_outputs"] = encoder_outputs
|
218 |
+
inputs["cls_tokens"] = cls_tokens
|
219 |
+
inputs["image"] = rgbs
|
220 |
+
if gt_intrinsics is not None:
|
221 |
+
rays, angles = generate_rays(
|
222 |
+
gt_intrinsics, self.image_shape, noisy=self.training
|
223 |
+
)
|
224 |
+
inputs["rays"] = rays
|
225 |
+
inputs["angles"] = angles
|
226 |
+
inputs["K"] = gt_intrinsics
|
227 |
+
self.pixel_decoder.test_fixed_camera = True
|
228 |
+
self.pixel_decoder.skip_camera = skip_camera
|
229 |
+
|
230 |
+
# decode all
|
231 |
+
pred_intrinsics, predictions, _, _ = self.pixel_decoder(inputs, {})
|
232 |
+
|
233 |
+
# undo the reshaping and get original image size (slow)
|
234 |
+
predictions, pred_intrinsics = _postprocess(
|
235 |
+
predictions,
|
236 |
+
pred_intrinsics,
|
237 |
+
self.image_shape,
|
238 |
+
(pad_left, pad_right, pad_top, pad_bottom),
|
239 |
+
ratio,
|
240 |
+
(H, W),
|
241 |
+
)
|
242 |
+
|
243 |
+
# final 3D points backprojection
|
244 |
+
intrinsics = gt_intrinsics if gt_intrinsics is not None else pred_intrinsics
|
245 |
+
angles = generate_rays(intrinsics, (H, W), noisy=False)[-1]
|
246 |
+
angles = rearrange(angles, "b (h w) c -> b c h w", h=H, w=W)
|
247 |
+
points_3d = torch.cat((angles, predictions), dim=1)
|
248 |
+
points_3d = spherical_zbuffer_to_euclidean(
|
249 |
+
points_3d.permute(0, 2, 3, 1)
|
250 |
+
).permute(0, 3, 1, 2)
|
251 |
+
|
252 |
+
# output data
|
253 |
+
outputs = {
|
254 |
+
"intrinsics": pred_intrinsics,
|
255 |
+
"points": points_3d,
|
256 |
+
"depth": predictions[:, -1:],
|
257 |
+
}
|
258 |
+
self.pixel_decoder.test_fixed_camera = False
|
259 |
+
self.pixel_decoder.skip_camera = False
|
260 |
+
return outputs
|
261 |
+
|
262 |
+
def load_pretrained(self, model_file):
|
263 |
+
device = (
|
264 |
+
torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
265 |
+
)
|
266 |
+
dict_model = torch.load(model_file, map_location=device)
|
267 |
+
|
268 |
+
if "model" in dict_model:
|
269 |
+
dict_model = dict_model["model"]
|
270 |
+
new_state_dict = deepcopy(
|
271 |
+
{k.replace("module.", ""): v for k, v in dict_model.items()}
|
272 |
+
)
|
273 |
+
|
274 |
+
info = self.load_state_dict(new_state_dict, strict=False)
|
275 |
+
if is_main_process():
|
276 |
+
print(
|
277 |
+
f"Loaded from {model_file} for {self.__class__.__name__} results in:",
|
278 |
+
info,
|
279 |
+
)
|
280 |
+
|
281 |
+
def get_params(self, config):
|
282 |
+
if hasattr(self.pixel_encoder, "get_params"):
|
283 |
+
encoder_p, encoder_lr = self.pixel_encoder.get_params(
|
284 |
+
config["model"]["pixel_encoder"]["lr"],
|
285 |
+
config["training"]["wd"],
|
286 |
+
config["training"]["ld"],
|
287 |
+
)
|
288 |
+
else:
|
289 |
+
encoder_p, encoder_lr = get_params(
|
290 |
+
self.pixel_encoder,
|
291 |
+
config["model"]["pixel_encoder"]["lr"],
|
292 |
+
config["training"]["wd"],
|
293 |
+
)
|
294 |
+
decoder_p, decoder_lr = get_params(
|
295 |
+
self.pixel_decoder, config["training"]["lr"], config["training"]["wd"]
|
296 |
+
)
|
297 |
+
return [*encoder_p, *decoder_p], [*encoder_lr, *decoder_lr]
|
298 |
+
|
299 |
+
@property
|
300 |
+
def device(self):
|
301 |
+
return next(self.parameters()).device
|
302 |
+
|
303 |
+
def build(self, config: Dict[str, Dict[str, Any]]):
|
304 |
+
mod = importlib.import_module("unidepth.models.encoder")
|
305 |
+
pixel_encoder_factory = getattr(mod, config["model"]["pixel_encoder"]["name"])
|
306 |
+
pixel_encoder_config = {
|
307 |
+
**config["training"],
|
308 |
+
**config["data"],
|
309 |
+
**config["model"]["pixel_encoder"],
|
310 |
+
}
|
311 |
+
pixel_encoder = pixel_encoder_factory(pixel_encoder_config)
|
312 |
+
|
313 |
+
config["model"]["pixel_encoder"]["patch_size"] = (
|
314 |
+
14 if "dino" in config["model"]["pixel_encoder"]["name"] else 16
|
315 |
+
)
|
316 |
+
pixel_encoder_embed_dims = (
|
317 |
+
pixel_encoder.embed_dims
|
318 |
+
if hasattr(pixel_encoder, "embed_dims")
|
319 |
+
else [getattr(pixel_encoder, "embed_dim") * 2**i for i in range(4)]
|
320 |
+
)
|
321 |
+
config["model"]["pixel_encoder"]["embed_dim"] = getattr(
|
322 |
+
pixel_encoder, "embed_dim"
|
323 |
+
)
|
324 |
+
config["model"]["pixel_encoder"]["embed_dims"] = pixel_encoder_embed_dims
|
325 |
+
config["model"]["pixel_encoder"]["depths"] = pixel_encoder.depths
|
326 |
+
|
327 |
+
self.pixel_encoder = pixel_encoder
|
328 |
+
self.pixel_decoder = Decoder(config)
|
329 |
+
self.image_shape = config["data"]["image_shape"]
|
flash3d/unidepth/ops/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .losses import SILog, MSE, SelfCons
|
2 |
+
from .scheduler import CosineScheduler
|
3 |
+
|
4 |
+
__all__ = [
|
5 |
+
"SILog",
|
6 |
+
"MSE",
|
7 |
+
"SelfCons",
|
8 |
+
"CosineScheduler",
|
9 |
+
]
|
flash3d/unidepth/ops/losses.py
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Luigi Piccinelli
|
3 |
+
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
|
4 |
+
"""
|
5 |
+
|
6 |
+
from typing import Any, Optional, Dict, Tuple, List
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
|
13 |
+
FNS = {
|
14 |
+
"sqrt": torch.sqrt,
|
15 |
+
"log": torch.log,
|
16 |
+
"log1": lambda x: torch.log(x + 1),
|
17 |
+
"linear": lambda x: x,
|
18 |
+
"square": torch.square,
|
19 |
+
"disp": lambda x: 1 / x,
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
FNS_INV = {
|
24 |
+
"sqrt": torch.square,
|
25 |
+
"log": torch.exp,
|
26 |
+
"log1": lambda x: torch.exp(x) - 1,
|
27 |
+
"linear": lambda x: x,
|
28 |
+
"square": torch.sqrt,
|
29 |
+
"disp": lambda x: 1 / x,
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
def masked_mean_var(data: torch.Tensor, mask: torch.Tensor, dim: List[int]):
|
34 |
+
if mask is None:
|
35 |
+
return data.mean(dim=dim, keepdim=True), data.var(dim=dim, keepdim=True)
|
36 |
+
mask = mask.float()
|
37 |
+
mask_sum = torch.sum(mask, dim=dim, keepdim=True)
|
38 |
+
mask_mean = torch.sum(data * mask, dim=dim, keepdim=True) / torch.clamp(
|
39 |
+
mask_sum, min=1.0
|
40 |
+
)
|
41 |
+
mask_var = torch.sum(
|
42 |
+
mask * (data - mask_mean) ** 2, dim=dim, keepdim=True
|
43 |
+
) / torch.clamp(mask_sum, min=1.0)
|
44 |
+
return mask_mean.squeeze(dim), mask_var.squeeze(dim)
|
45 |
+
|
46 |
+
|
47 |
+
def masked_mean(data: torch.Tensor, mask: torch.Tensor | None, dim: List[int]):
|
48 |
+
if mask is None:
|
49 |
+
return data.mean(dim=dim, keepdim=True)
|
50 |
+
mask = mask.float()
|
51 |
+
mask_sum = torch.sum(mask, dim=dim, keepdim=True)
|
52 |
+
mask_mean = torch.sum(data * mask, dim=dim, keepdim=True) / torch.clamp(
|
53 |
+
mask_sum, min=1.0
|
54 |
+
)
|
55 |
+
return mask_mean
|
56 |
+
|
57 |
+
|
58 |
+
def masked_mae(data: torch.Tensor, mask: torch.Tensor, dim: Tuple[int, ...]):
|
59 |
+
if mask is None:
|
60 |
+
return data.abs().mean(dim=dim, keepdim=True)
|
61 |
+
mask = mask.float()
|
62 |
+
mask_sum = torch.sum(mask, dim=dim, keepdim=True)
|
63 |
+
mask_mean = torch.sum(data.abs() * mask, dim=dim, keepdim=True) / torch.clamp(
|
64 |
+
mask_sum, min=1.0
|
65 |
+
)
|
66 |
+
return mask_mean
|
67 |
+
|
68 |
+
|
69 |
+
def masked_mse(data: torch.Tensor, mask: torch.Tensor, dim: Tuple[int, ...]):
|
70 |
+
if mask is None:
|
71 |
+
return (data**2).mean(dim=dim, keepdim=True)
|
72 |
+
mask = mask.float()
|
73 |
+
mask_sum = torch.sum(mask, dim=dim, keepdim=True)
|
74 |
+
mask_mean = torch.sum((data**2) * mask, dim=dim, keepdim=True) / torch.clamp(
|
75 |
+
mask_sum, min=1.0
|
76 |
+
)
|
77 |
+
return mask_mean
|
78 |
+
|
79 |
+
|
80 |
+
def masked_median(data: torch.Tensor, mask: torch.Tensor, dim: List[int]):
|
81 |
+
ndim = data.ndim
|
82 |
+
data = data.flatten(ndim - len(dim))
|
83 |
+
mask = mask.flatten(ndim - len(dim))
|
84 |
+
mask_median = torch.median(data[mask], dim=-1).values
|
85 |
+
return mask_median
|
86 |
+
|
87 |
+
|
88 |
+
def masked_median_mad(data: torch.Tensor, mask: torch.Tensor):
|
89 |
+
data = data.flatten()
|
90 |
+
mask = mask.flatten()
|
91 |
+
mask_median = torch.median(data[mask])
|
92 |
+
n_samples = torch.clamp(torch.sum(mask.float()), min=1.0)
|
93 |
+
mask_mad = torch.sum((data[mask] - mask_median).abs()) / n_samples
|
94 |
+
return mask_median, mask_mad
|
95 |
+
|
96 |
+
|
97 |
+
def masked_weighted_mean_var(
|
98 |
+
data: torch.Tensor, mask: torch.Tensor, weights: torch.Tensor, dim: Tuple[int, ...]
|
99 |
+
):
|
100 |
+
if mask is None:
|
101 |
+
return data.mean(dim=dim, keepdim=True), data.var(dim=dim, keepdim=True)
|
102 |
+
mask = mask.float()
|
103 |
+
mask_mean = torch.sum(data * mask * weights, dim=dim, keepdim=True) / torch.sum(
|
104 |
+
mask * weights, dim=dim, keepdim=True
|
105 |
+
).clamp(min=1.0)
|
106 |
+
# V1**2 - V2, V1: sum w_i, V2: sum w_i**2
|
107 |
+
denom = torch.sum(weights * mask, dim=dim, keepdim=True).square() - torch.sum(
|
108 |
+
(mask * weights).square(), dim=dim, keepdim=True
|
109 |
+
)
|
110 |
+
# correction is V1 / (V1**2 - V2), if w_i=1 => N/(N**2 - N) => 1/(N-1) (unbiased estimator of variance, cvd)
|
111 |
+
correction_factor = torch.sum(mask * weights, dim=dim, keepdim=True) / denom.clamp(
|
112 |
+
min=1.0
|
113 |
+
)
|
114 |
+
mask_var = correction_factor * torch.sum(
|
115 |
+
weights * mask * (data - mask_mean) ** 2, dim=dim, keepdim=True
|
116 |
+
)
|
117 |
+
return mask_mean, mask_var
|
118 |
+
|
119 |
+
|
120 |
+
def masked_mean_var_q(data: torch.Tensor, mask: torch.Tensor, dim: List[int]):
|
121 |
+
if mask is None:
|
122 |
+
return data.mean(dim=dim, keepdim=True), data.var(dim=dim, keepdim=True)
|
123 |
+
mask = mask.float()
|
124 |
+
mask_sum = torch.sum(mask, dim=dim, keepdim=True)
|
125 |
+
mask_mean = torch.sum(data * mask, dim=dim, keepdim=True) / torch.clamp(
|
126 |
+
mask_sum, min=1.0
|
127 |
+
)
|
128 |
+
mask_var = torch.sum(
|
129 |
+
mask * (data - mask_mean) ** 2, dim=dim, keepdim=True
|
130 |
+
) / torch.clamp(mask_sum, min=1.0)
|
131 |
+
return mask_mean, mask_var
|
132 |
+
|
133 |
+
|
134 |
+
class SILog(nn.Module):
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
weight: float,
|
138 |
+
scale_pred_weight: float = 0.15,
|
139 |
+
output_fn: str = "sqrt",
|
140 |
+
input_fn: str = "log",
|
141 |
+
legacy: bool = False,
|
142 |
+
abs_rel: bool = False,
|
143 |
+
norm: bool = False,
|
144 |
+
eps: float = 1e-5,
|
145 |
+
):
|
146 |
+
super().__init__()
|
147 |
+
assert output_fn in FNS
|
148 |
+
self.name: str = self.__class__.__name__
|
149 |
+
self.weight: float = weight
|
150 |
+
|
151 |
+
self.scale_pred_weight: float = scale_pred_weight
|
152 |
+
self.dims = (-4, -3, -2, -1) if legacy else (-2, -1)
|
153 |
+
self.output_fn = FNS[output_fn]
|
154 |
+
self.input_fn = FNS[input_fn]
|
155 |
+
self.abs_rel = abs_rel
|
156 |
+
self.norm = norm
|
157 |
+
self.eps: float = eps
|
158 |
+
|
159 |
+
@torch.cuda.amp.autocast(enabled=False)
|
160 |
+
def forward(
|
161 |
+
self,
|
162 |
+
input: torch.Tensor,
|
163 |
+
target: torch.Tensor,
|
164 |
+
mask: Optional[torch.Tensor] = None,
|
165 |
+
interpolate: bool = True,
|
166 |
+
scale_inv: torch.Tensor | None = None,
|
167 |
+
ss_inv: torch.Tensor | None = None,
|
168 |
+
**kwargs
|
169 |
+
) -> torch.Tensor:
|
170 |
+
if interpolate:
|
171 |
+
input = F.interpolate(
|
172 |
+
input, target.shape[-2:], mode="bilinear", align_corners=False
|
173 |
+
)
|
174 |
+
if mask is not None:
|
175 |
+
mask = mask.to(torch.bool)
|
176 |
+
if ss_inv is not None:
|
177 |
+
ss_inv = ~ss_inv
|
178 |
+
|
179 |
+
if input.shape[1] > 1:
|
180 |
+
input_ = torch.cat(
|
181 |
+
[input[:, :-1], self.input_fn(input[:, -1:].clamp(min=self.eps))], dim=1
|
182 |
+
)
|
183 |
+
target_ = torch.cat(
|
184 |
+
[target[:, :-1], self.input_fn(target[:, -1:].clamp(min=self.eps))],
|
185 |
+
dim=1,
|
186 |
+
)
|
187 |
+
error = torch.norm(input_ - target_, dim=1, keepdim=True)
|
188 |
+
else:
|
189 |
+
input_ = self.input_fn(input.clamp(min=self.eps))
|
190 |
+
target_ = self.input_fn(target.clamp(min=self.eps))
|
191 |
+
error = input_ - target_
|
192 |
+
|
193 |
+
mean_error, var_error = masked_mean_var(data=error, mask=mask, dim=self.dims)
|
194 |
+
|
195 |
+
# prevoiusly was inverted!!
|
196 |
+
if self.abs_rel:
|
197 |
+
scale_error = (input - target).abs()[:, -1:] / target[:, -1:].clip(
|
198 |
+
min=self.eps
|
199 |
+
)
|
200 |
+
scale_error = masked_mean(data=scale_error, mask=mask, dim=self.dims)
|
201 |
+
else:
|
202 |
+
scale_error = mean_error**2
|
203 |
+
|
204 |
+
if var_error.ndim > 1:
|
205 |
+
var_error = var_error.sum(dim=1)
|
206 |
+
scale_error = scale_error.sum(dim=1)
|
207 |
+
|
208 |
+
# if scale inv -> mask scale error, if scale/shift, mask the full loss
|
209 |
+
if scale_inv is not None:
|
210 |
+
scale_error = (1 - scale_inv.int()) * scale_error
|
211 |
+
scale_error = self.scale_pred_weight * scale_error
|
212 |
+
loss = var_error + scale_error
|
213 |
+
out_loss = self.output_fn(loss.clamp(min=self.eps))
|
214 |
+
out_loss = masked_mean(data=out_loss, mask=ss_inv, dim=(0,))
|
215 |
+
return out_loss.mean()
|
216 |
+
|
217 |
+
@classmethod
|
218 |
+
def build(cls, config: Dict[str, Any]):
|
219 |
+
obj = cls(
|
220 |
+
weight=config["weight"],
|
221 |
+
legacy=config["legacy"],
|
222 |
+
output_fn=config["output_fn"],
|
223 |
+
input_fn=config["input_fn"],
|
224 |
+
norm=config.get("norm", False),
|
225 |
+
scale_pred_weight=config.get("gamma", 0.15),
|
226 |
+
abs_rel=config.get("abs_rel", False),
|
227 |
+
)
|
228 |
+
return obj
|
229 |
+
|
230 |
+
|
231 |
+
class MSE(nn.Module):
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
weight: float = 1.0,
|
235 |
+
input_fn: str = "linear",
|
236 |
+
output_fn: str = "linear",
|
237 |
+
):
|
238 |
+
super().__init__()
|
239 |
+
self.name: str = self.__class__.__name__
|
240 |
+
self.output_fn = FNS[output_fn]
|
241 |
+
self.input_fn = FNS[input_fn]
|
242 |
+
self.weight: float = weight
|
243 |
+
self.eps = 1e-6
|
244 |
+
|
245 |
+
@torch.cuda.amp.autocast(enabled=False)
|
246 |
+
def forward(
|
247 |
+
self,
|
248 |
+
input: torch.Tensor,
|
249 |
+
target: torch.Tensor,
|
250 |
+
mask: torch.Tensor | None = None,
|
251 |
+
batch_mask: torch.Tensor | None = None,
|
252 |
+
**kwargs
|
253 |
+
) -> torch.Tensor:
|
254 |
+
input = input[..., : target.shape[-1]] # B N C or B H W C
|
255 |
+
error = self.input_fn(input + self.eps) - self.input_fn(target + self.eps)
|
256 |
+
abs_error = torch.square(error).sum(dim=-1)
|
257 |
+
mean_error = masked_mean(data=abs_error, mask=mask, dim=(-1,)).mean(dim=-1)
|
258 |
+
batched_error = masked_mean(
|
259 |
+
self.output_fn(mean_error.clamp(self.eps)), batch_mask, dim=(0,)
|
260 |
+
)
|
261 |
+
return batched_error.mean(), mean_error.detach()
|
262 |
+
|
263 |
+
@classmethod
|
264 |
+
def build(cls, config: Dict[str, Any]):
|
265 |
+
obj = cls(
|
266 |
+
weight=config["weight"],
|
267 |
+
output_fn=config["output_fn"],
|
268 |
+
input_fn=config["input_fn"],
|
269 |
+
)
|
270 |
+
return obj
|
271 |
+
|
272 |
+
|
273 |
+
class SelfCons(nn.Module):
|
274 |
+
def __init__(
|
275 |
+
self,
|
276 |
+
weight: float,
|
277 |
+
scale_pred_weight: float = 0.15,
|
278 |
+
output_fn: str = "sqrt",
|
279 |
+
input_fn: str = "log",
|
280 |
+
abs_rel: bool = False,
|
281 |
+
norm: bool = False,
|
282 |
+
eps: float = 1e-5,
|
283 |
+
):
|
284 |
+
super().__init__()
|
285 |
+
assert output_fn in FNS
|
286 |
+
self.name: str = self.__class__.__name__
|
287 |
+
self.weight: float = weight
|
288 |
+
|
289 |
+
self.scale_pred_weight: float = scale_pred_weight
|
290 |
+
self.dims = (-2, -1)
|
291 |
+
self.output_fn = FNS[output_fn]
|
292 |
+
self.input_fn = FNS[input_fn]
|
293 |
+
self.abs_rel = abs_rel
|
294 |
+
self.norm = norm
|
295 |
+
self.eps: float = eps
|
296 |
+
|
297 |
+
@torch.cuda.amp.autocast(enabled=False)
|
298 |
+
def forward(
|
299 |
+
self,
|
300 |
+
input: torch.Tensor,
|
301 |
+
mask: torch.Tensor,
|
302 |
+
metas: List[Dict[str, torch.Tensor]],
|
303 |
+
) -> torch.Tensor:
|
304 |
+
chunks = input.shape[0] // 2
|
305 |
+
device = input.device
|
306 |
+
mask = F.interpolate(mask.float(), size=input.shape[-2:], mode="nearest")
|
307 |
+
|
308 |
+
rescales = input.shape[-2] / torch.tensor(
|
309 |
+
[x["resized_shape"][0] for x in metas], device=device
|
310 |
+
)
|
311 |
+
cams = torch.cat([x["K_target"] for x in metas], dim=0).to(device)
|
312 |
+
flips = torch.tensor([x["flip"] for x in metas], device=device)
|
313 |
+
|
314 |
+
iters = zip(
|
315 |
+
input.chunk(chunks),
|
316 |
+
mask.chunk(chunks),
|
317 |
+
cams.chunk(chunks),
|
318 |
+
rescales.chunk(chunks),
|
319 |
+
flips.chunk(chunks),
|
320 |
+
)
|
321 |
+
inputs0, inputs1, masks = [], [], []
|
322 |
+
for i, (pair_input, pair_mask, pair_cam, pair_rescale, pair_flip) in enumerate(
|
323 |
+
iters
|
324 |
+
):
|
325 |
+
mask0, mask1 = pair_mask
|
326 |
+
input0, input1 = pair_input
|
327 |
+
cam0, cam1 = pair_cam
|
328 |
+
rescale0, rescale1 = pair_rescale
|
329 |
+
flip0, flip1 = pair_flip
|
330 |
+
|
331 |
+
fx_0 = cam0[0, 0] * rescale0
|
332 |
+
fx_1 = cam1[0, 0] * rescale1
|
333 |
+
cx_0 = (cam0[0, 2] - 0.5) * rescale0 + 0.5
|
334 |
+
cx_1 = (cam1[0, 2] - 0.5) * rescale1 + 0.5
|
335 |
+
cy_0 = (cam0[1, 2] - 0.5) * rescale0 + 0.5
|
336 |
+
cy_1 = (cam1[1, 2] - 0.5) * rescale1 + 0.5
|
337 |
+
|
338 |
+
# flip image
|
339 |
+
if flip0 ^ flip1:
|
340 |
+
input0 = torch.flip(input0, dims=(2,))
|
341 |
+
mask0 = torch.flip(mask0, dims=(2,))
|
342 |
+
cx_0 = input0.shape[-1] - cx_0
|
343 |
+
|
344 |
+
# calc zoom
|
345 |
+
zoom_x = float(fx_1 / fx_0)
|
346 |
+
|
347 |
+
# apply zoom
|
348 |
+
input0 = F.interpolate(
|
349 |
+
input0.unsqueeze(0),
|
350 |
+
scale_factor=zoom_x,
|
351 |
+
mode="bilinear",
|
352 |
+
align_corners=True,
|
353 |
+
).squeeze(0)
|
354 |
+
mask0 = F.interpolate(
|
355 |
+
mask0.unsqueeze(0), scale_factor=zoom_x, mode="nearest"
|
356 |
+
).squeeze(0)
|
357 |
+
|
358 |
+
# calc translation
|
359 |
+
change_left = int(cx_1 - (cx_0 - 0.5) * zoom_x - 0.5)
|
360 |
+
change_top = int(cy_1 - (cy_0 - 0.5) * zoom_x - 0.5)
|
361 |
+
change_right = input1.shape[-1] - change_left - input0.shape[-1]
|
362 |
+
change_bottom = input1.shape[-2] - change_top - input0.shape[-2]
|
363 |
+
|
364 |
+
# apply translation
|
365 |
+
pad_left = max(0, change_left)
|
366 |
+
pad_right = max(0, change_right)
|
367 |
+
pad_top = max(0, change_top)
|
368 |
+
pad_bottom = max(0, change_bottom)
|
369 |
+
|
370 |
+
crop_left = max(0, -change_left)
|
371 |
+
crop_right = max(0, -change_right)
|
372 |
+
crop_top = max(0, -change_top)
|
373 |
+
crop_bottom = max(0, -change_bottom)
|
374 |
+
|
375 |
+
input0 = F.pad(
|
376 |
+
input0,
|
377 |
+
(pad_left, pad_right, pad_top, pad_bottom),
|
378 |
+
mode="constant",
|
379 |
+
value=0,
|
380 |
+
)
|
381 |
+
mask0 = F.pad(
|
382 |
+
mask0,
|
383 |
+
(pad_left, pad_right, pad_top, pad_bottom),
|
384 |
+
mode="constant",
|
385 |
+
value=0,
|
386 |
+
)
|
387 |
+
input0 = input0[
|
388 |
+
:,
|
389 |
+
crop_top : input0.shape[-2] - crop_bottom,
|
390 |
+
crop_left : input0.shape[-1] - crop_right,
|
391 |
+
]
|
392 |
+
mask0 = mask0[
|
393 |
+
:,
|
394 |
+
crop_top : mask0.shape[-2] - crop_bottom,
|
395 |
+
crop_left : mask0.shape[-1] - crop_right,
|
396 |
+
]
|
397 |
+
|
398 |
+
mask = torch.logical_and(mask0, mask1)
|
399 |
+
|
400 |
+
inputs0.append(input0)
|
401 |
+
inputs1.append(input1)
|
402 |
+
masks.append(mask)
|
403 |
+
|
404 |
+
inputs0 = torch.stack(inputs0, dim=0)
|
405 |
+
inputs1 = torch.stack(inputs1, dim=0)
|
406 |
+
masks = torch.stack(masks, dim=0)
|
407 |
+
loss1 = self.loss(inputs0, inputs1.detach(), masks)
|
408 |
+
loss2 = self.loss(inputs1, inputs0.detach(), masks)
|
409 |
+
return torch.cat([loss1, loss2], dim=0).mean()
|
410 |
+
|
411 |
+
def loss(
|
412 |
+
self,
|
413 |
+
input: torch.Tensor,
|
414 |
+
target: torch.Tensor,
|
415 |
+
mask: torch.Tensor,
|
416 |
+
) -> torch.Tensor:
|
417 |
+
loss = masked_mean(
|
418 |
+
(input - target).square().mean(dim=1), mask=mask, dim=(-2, -1)
|
419 |
+
)
|
420 |
+
return self.output_fn(loss + self.eps)
|
421 |
+
|
422 |
+
@classmethod
|
423 |
+
def build(cls, config: Dict[str, Any]):
|
424 |
+
obj = cls(
|
425 |
+
weight=config["weight"],
|
426 |
+
output_fn=config["output_fn"],
|
427 |
+
input_fn=config["input_fn"],
|
428 |
+
)
|
429 |
+
return obj
|
flash3d/unidepth/ops/scheduler.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Luigi Piccinelli
|
3 |
+
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
|
4 |
+
"""
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
|
9 |
+
class CosineScheduler(object):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
optimizer,
|
13 |
+
warmup_iters,
|
14 |
+
total_iters,
|
15 |
+
key,
|
16 |
+
overwrite=False,
|
17 |
+
init_value=None,
|
18 |
+
base_value=None,
|
19 |
+
final_value=None,
|
20 |
+
step_init=-1,
|
21 |
+
):
|
22 |
+
super().__init__()
|
23 |
+
self.iter = step_init
|
24 |
+
self.overwrite = overwrite
|
25 |
+
self.optimizer = optimizer
|
26 |
+
self.base_value = base_value
|
27 |
+
self.init_value = init_value
|
28 |
+
self.final_value = final_value
|
29 |
+
self.total_iters = total_iters
|
30 |
+
self.warmup_iters = warmup_iters
|
31 |
+
self.key = key
|
32 |
+
self.schedulers = [
|
33 |
+
self.get_schedulers(group) for group in optimizer.param_groups
|
34 |
+
]
|
35 |
+
|
36 |
+
def get_schedulers(self, group):
|
37 |
+
init_value = group.get(self.key + "_init", self.init_value)
|
38 |
+
base_value = group.get(self.key + "_base", self.base_value)
|
39 |
+
final_value = group.get(self.key + "_final", self.final_value)
|
40 |
+
warmup_iters = self.warmup_iters
|
41 |
+
total_iters = self.total_iters
|
42 |
+
if self.overwrite:
|
43 |
+
final_value = self.final_value
|
44 |
+
|
45 |
+
# normalize in 0,1, then apply function (power) and denormalize
|
46 |
+
normalized_schedule = np.linspace(0, 1, warmup_iters, endpoint=True)
|
47 |
+
normalized_schedule = np.power(normalized_schedule, 2)
|
48 |
+
warmup_schedule = (base_value - init_value) * normalized_schedule + init_value
|
49 |
+
|
50 |
+
# main scheduling
|
51 |
+
iters = np.arange(total_iters - warmup_iters)
|
52 |
+
schedule = final_value + 0.5 * (base_value - final_value) * (
|
53 |
+
1 + np.cos(np.pi * iters / len(iters))
|
54 |
+
)
|
55 |
+
return np.concatenate((warmup_schedule, schedule))
|
56 |
+
|
57 |
+
def step(self):
|
58 |
+
self.iter = self.iter + 1
|
59 |
+
vals = self[self.iter]
|
60 |
+
for group, val in zip(self.optimizer.param_groups, vals):
|
61 |
+
if isinstance(group[self.key], (tuple, list)):
|
62 |
+
val = (val, *group[self.key][1:])
|
63 |
+
group[self.key] = val
|
64 |
+
|
65 |
+
def __getitem__(self, it):
|
66 |
+
it = min(it, self.total_iters - 1)
|
67 |
+
return [scheduler[it] for scheduler in self.schedulers]
|
68 |
+
|
69 |
+
def get(self):
|
70 |
+
return [group[self.key] for group in self.optimizer.param_groups]
|
flash3d/unidepth/utils/__init__.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .evaluation_depth import eval_depth, DICT_METRICS
|
2 |
+
from .visualization import colorize, image_grid, log_train_artifacts
|
3 |
+
from .misc import format_seconds, remove_padding, get_params, identity
|
4 |
+
from .distributed import (
|
5 |
+
is_main_process,
|
6 |
+
setup_multi_processes,
|
7 |
+
setup_slurm,
|
8 |
+
sync_tensor_across_gpus,
|
9 |
+
barrier,
|
10 |
+
get_rank,
|
11 |
+
get_dist_info,
|
12 |
+
)
|
13 |
+
from .geometric import unproject_points, spherical_zbuffer_to_euclidean
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
"eval_depth",
|
17 |
+
"DICT_METRICS",
|
18 |
+
"colorize",
|
19 |
+
"image_grid",
|
20 |
+
"log_train_artifacts",
|
21 |
+
"format_seconds",
|
22 |
+
"remove_padding",
|
23 |
+
"get_params",
|
24 |
+
"identity",
|
25 |
+
"is_main_process",
|
26 |
+
"setup_multi_processes",
|
27 |
+
"setup_slurm",
|
28 |
+
"sync_tensor_across_gpus",
|
29 |
+
"barrier",
|
30 |
+
"get_rank",
|
31 |
+
"unproject_points",
|
32 |
+
"spherical_zbuffer_to_euclidean",
|
33 |
+
"validate",
|
34 |
+
"get_dist_info",
|
35 |
+
]
|
flash3d/unidepth/utils/constants.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Luigi Piccinelli
|
3 |
+
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
import torch
|
8 |
+
|
9 |
+
OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
10 |
+
OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
|
11 |
+
IMAGENET_DATASET_MEAN = (0.485, 0.456, 0.406)
|
12 |
+
IMAGENET_DATASET_STD = (0.229, 0.224, 0.225)
|
13 |
+
DEPTH_BINS = torch.cat(
|
14 |
+
(
|
15 |
+
torch.logspace(math.log10(0.1), math.log10(180.0), steps=512),
|
16 |
+
torch.tensor([260.0]),
|
17 |
+
),
|
18 |
+
dim=0,
|
19 |
+
)
|
20 |
+
LOGERR_BINS = torch.linspace(-2, 2, steps=128 + 1)
|
21 |
+
LINERR_BINS = torch.linspace(-50, 50, steps=256 + 1)
|
flash3d/unidepth/utils/distributed.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Luigi Piccinelli
|
3 |
+
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import platform
|
8 |
+
import warnings
|
9 |
+
import subprocess
|
10 |
+
|
11 |
+
import cv2
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.utils.data.distributed
|
15 |
+
from torch import multiprocessing as mp
|
16 |
+
from torch import distributed as dist
|
17 |
+
|
18 |
+
|
19 |
+
def is_dist_avail_and_initialized():
|
20 |
+
if not dist.is_available():
|
21 |
+
return False
|
22 |
+
if not dist.is_initialized():
|
23 |
+
return False
|
24 |
+
return True
|
25 |
+
|
26 |
+
|
27 |
+
def get_rank():
|
28 |
+
if not is_dist_avail_and_initialized():
|
29 |
+
return 0
|
30 |
+
return dist.get_rank()
|
31 |
+
|
32 |
+
|
33 |
+
def barrier():
|
34 |
+
if not is_dist_avail_and_initialized():
|
35 |
+
return
|
36 |
+
dist.barrier()
|
37 |
+
|
38 |
+
|
39 |
+
def is_main_process():
|
40 |
+
return get_rank() == 0
|
41 |
+
|
42 |
+
|
43 |
+
def is_rank_zero(args):
|
44 |
+
return args.rank == 0
|
45 |
+
|
46 |
+
|
47 |
+
def get_dist_info():
|
48 |
+
if dist.is_available() and dist.is_initialized():
|
49 |
+
rank = dist.get_rank()
|
50 |
+
world_size = dist.get_world_size()
|
51 |
+
else:
|
52 |
+
rank = 0
|
53 |
+
world_size = 1
|
54 |
+
return rank, world_size
|
55 |
+
|
56 |
+
|
57 |
+
def setup_multi_processes(cfg):
|
58 |
+
"""Setup multi-processing environment variables."""
|
59 |
+
# set multi-process start method as `fork` to speed up the training
|
60 |
+
if platform.system() != "Windows":
|
61 |
+
mp_start_method = cfg.get("mp_start_method", "fork")
|
62 |
+
current_method = mp.get_start_method(allow_none=True)
|
63 |
+
if current_method is not None and current_method != mp_start_method:
|
64 |
+
warnings.warn(
|
65 |
+
f"Multi-processing start method `{mp_start_method}` is "
|
66 |
+
f"different from the previous setting `{current_method}`."
|
67 |
+
f"It will be force set to `{mp_start_method}`. You can change "
|
68 |
+
f"this behavior by changing `mp_start_method` in your config."
|
69 |
+
)
|
70 |
+
mp.set_start_method(mp_start_method, force=True)
|
71 |
+
|
72 |
+
# disable opencv multithreading to avoid system being overloaded
|
73 |
+
opencv_num_threads = cfg.get("opencv_num_threads", 0)
|
74 |
+
cv2.setNumThreads(opencv_num_threads)
|
75 |
+
|
76 |
+
# setup OMP threads
|
77 |
+
# This code is referred from https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py # noqa
|
78 |
+
workers_per_gpu = cfg.get("workers_per_gpu", 4)
|
79 |
+
|
80 |
+
if "OMP_NUM_THREADS" not in os.environ and workers_per_gpu > 1:
|
81 |
+
omp_num_threads = 1
|
82 |
+
warnings.warn(
|
83 |
+
f"Setting OMP_NUM_THREADS environment variable for each process "
|
84 |
+
f"to be {omp_num_threads} in default, to avoid your system being "
|
85 |
+
f"overloaded, please further tune the variable for optimal "
|
86 |
+
f"performance in your application as needed."
|
87 |
+
)
|
88 |
+
os.environ["OMP_NUM_THREADS"] = str(omp_num_threads)
|
89 |
+
|
90 |
+
# setup MKL threads
|
91 |
+
if "MKL_NUM_THREADS" not in os.environ and workers_per_gpu > 1:
|
92 |
+
mkl_num_threads = os.environ.get("OMP_NUM_THREADS", 1)
|
93 |
+
warnings.warn(
|
94 |
+
f"Setting MKL_NUM_THREADS environment variable for each process "
|
95 |
+
f"to be {mkl_num_threads} in default, to avoid your system being "
|
96 |
+
f"overloaded, please further tune the variable for optimal "
|
97 |
+
f"performance in your application as needed."
|
98 |
+
)
|
99 |
+
os.environ["MKL_NUM_THREADS"] = str(mkl_num_threads)
|
100 |
+
|
101 |
+
|
102 |
+
def setup_slurm(backend: str, port: str) -> None:
|
103 |
+
"""Initialize slurm distributed training environment.
|
104 |
+
If argument ``port`` is not specified, then the master port will be system
|
105 |
+
environment variable ``MASTER_PORT``. If ``MASTER_PORT`` is not in system
|
106 |
+
environment variable, then a default port ``29500`` will be used.
|
107 |
+
Args:
|
108 |
+
backend (str): Backend of torch.distributed.
|
109 |
+
port (int, optional): Master port. Defaults to None.
|
110 |
+
"""
|
111 |
+
proc_id = int(os.environ["SLURM_PROCID"])
|
112 |
+
ntasks = int(os.environ["SLURM_NTASKS"])
|
113 |
+
node_list = os.environ["SLURM_NODELIST"]
|
114 |
+
|
115 |
+
num_gpus = torch.cuda.device_count()
|
116 |
+
|
117 |
+
torch.cuda.set_device(proc_id % num_gpus)
|
118 |
+
addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1")
|
119 |
+
os.environ["MASTER_PORT"] = str(port)
|
120 |
+
os.environ["MASTER_ADDR"] = addr
|
121 |
+
os.environ["WORLD_SIZE"] = str(ntasks)
|
122 |
+
os.environ["LOCAL_RANK"] = str(proc_id % num_gpus)
|
123 |
+
os.environ["RANK"] = str(proc_id)
|
124 |
+
print(
|
125 |
+
proc_id,
|
126 |
+
ntasks,
|
127 |
+
num_gpus,
|
128 |
+
proc_id % num_gpus,
|
129 |
+
node_list,
|
130 |
+
addr,
|
131 |
+
os.environ["MASTER_PORT"],
|
132 |
+
os.system("nvidia-smi -L"),
|
133 |
+
)
|
134 |
+
dist.init_process_group(backend, rank=proc_id, world_size=ntasks)
|
135 |
+
|
136 |
+
|
137 |
+
def sync_tensor_across_gpus(t, dim=0, cat=True):
|
138 |
+
if t is None or not (dist.is_available() and dist.is_initialized()):
|
139 |
+
return t
|
140 |
+
t = torch.atleast_1d(t)
|
141 |
+
group = dist.group.WORLD
|
142 |
+
group_size = torch.distributed.get_world_size(group)
|
143 |
+
|
144 |
+
local_size = torch.tensor(t.size(dim), device=t.device)
|
145 |
+
all_sizes = [torch.zeros_like(local_size) for _ in range(group_size)]
|
146 |
+
dist.all_gather(all_sizes, local_size)
|
147 |
+
max_size = max(all_sizes)
|
148 |
+
size_diff = max_size.item() - local_size.item()
|
149 |
+
if size_diff:
|
150 |
+
padding = torch.zeros(size_diff, device=t.device, dtype=t.dtype)
|
151 |
+
t = torch.cat((t, padding))
|
152 |
+
|
153 |
+
gather_t_tensor = [torch.zeros_like(t) for _ in range(group_size)]
|
154 |
+
dist.all_gather(gather_t_tensor, t)
|
155 |
+
all_ts = []
|
156 |
+
for t, size in zip(gather_t_tensor, all_sizes):
|
157 |
+
all_ts.append(t[:size])
|
158 |
+
if cat:
|
159 |
+
return torch.cat(all_ts, dim=0)
|
160 |
+
return all_ts
|
161 |
+
|
162 |
+
|
163 |
+
import pickle
|
164 |
+
|
165 |
+
|
166 |
+
def sync_string_across_gpus(keys: list[str], device, dim=0):
|
167 |
+
keys_serialized = pickle.dumps(keys, protocol=pickle.HIGHEST_PROTOCOL)
|
168 |
+
keys_serialized_tensor = torch.frombuffer(keys_serialized, dtype=torch.uint8).to(
|
169 |
+
device
|
170 |
+
)
|
171 |
+
keys_serialized_tensor = sync_tensor_across_gpus(
|
172 |
+
keys_serialized_tensor, dim=0, cat=False
|
173 |
+
)
|
174 |
+
keys = [
|
175 |
+
key
|
176 |
+
for keys in keys_serialized_tensor
|
177 |
+
for key in pickle.loads(bytes(keys.cpu().tolist()))
|
178 |
+
]
|
179 |
+
return keys
|
flash3d/unidepth/utils/ema_torch.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Luigi Piccinelli
|
3 |
+
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
|
4 |
+
"""
|
5 |
+
|
6 |
+
from __future__ import division
|
7 |
+
from __future__ import unicode_literals
|
8 |
+
|
9 |
+
from typing import Iterable, Optional
|
10 |
+
import weakref
|
11 |
+
import copy
|
12 |
+
import contextlib
|
13 |
+
from math import tanh
|
14 |
+
|
15 |
+
import torch
|
16 |
+
|
17 |
+
|
18 |
+
class DummyExponentialMovingAverage:
|
19 |
+
def __init__(self, *args, **kwargs):
|
20 |
+
pass
|
21 |
+
|
22 |
+
def _get_parameters(self, *args, **kwargs):
|
23 |
+
pass
|
24 |
+
|
25 |
+
def get_current_decay(self, *args, **kwargs):
|
26 |
+
pass
|
27 |
+
|
28 |
+
def update(self, *args, **kwargs):
|
29 |
+
pass
|
30 |
+
|
31 |
+
def copy_to(self, *args, **kwargs):
|
32 |
+
pass
|
33 |
+
|
34 |
+
def store(self, *args, **kwargs):
|
35 |
+
return
|
36 |
+
|
37 |
+
def restore(self, *args, **kwargs):
|
38 |
+
return
|
39 |
+
|
40 |
+
@contextlib.contextmanager
|
41 |
+
def average_parameters(self, *args, **kwargs):
|
42 |
+
try:
|
43 |
+
yield
|
44 |
+
finally:
|
45 |
+
pass
|
46 |
+
|
47 |
+
def to(self, *args, **kwargs):
|
48 |
+
pass
|
49 |
+
|
50 |
+
def state_dict(self, *args, **kwargs):
|
51 |
+
pass
|
52 |
+
|
53 |
+
def load_state_dict(self, *args, **kwargs):
|
54 |
+
pass
|
55 |
+
|
56 |
+
|
57 |
+
class ExponentialMovingAverage:
|
58 |
+
"""
|
59 |
+
Maintains (exponential) moving average of a set of parameters.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
parameters: Iterable of `torch.nn.Parameter` (typically from
|
63 |
+
`model.parameters()`).
|
64 |
+
Note that EMA is computed on *all* provided parameters,
|
65 |
+
regardless of whether or not they have `requires_grad = True`;
|
66 |
+
this allows a single EMA object to be consistantly used even
|
67 |
+
if which parameters are trainable changes step to step.
|
68 |
+
|
69 |
+
If you want to some parameters in the EMA, do not pass them
|
70 |
+
to the object in the first place. For example:
|
71 |
+
|
72 |
+
ExponentialMovingAverage(
|
73 |
+
parameters=[p for p in model.parameters() if p.requires_grad],
|
74 |
+
decay=0.9
|
75 |
+
)
|
76 |
+
|
77 |
+
will ignore parameters that do not require grad.
|
78 |
+
|
79 |
+
decay: The exponential decay.
|
80 |
+
|
81 |
+
use_num_updates: Whether to use number of updates when computing
|
82 |
+
averages.
|
83 |
+
"""
|
84 |
+
|
85 |
+
def __init__(
|
86 |
+
self,
|
87 |
+
parameters: Iterable[torch.nn.Parameter],
|
88 |
+
decay: float,
|
89 |
+
use_num_updates: bool = True,
|
90 |
+
update_after_step: int = 10000,
|
91 |
+
tau: int = 20000,
|
92 |
+
switch: bool = False,
|
93 |
+
):
|
94 |
+
if decay < 0.0 or decay > 1.0:
|
95 |
+
raise ValueError("Decay must be between 0 and 1")
|
96 |
+
self.decay = decay
|
97 |
+
self.switch = switch # fi keeping EMA params in model after epochs
|
98 |
+
self.num_updates = 0 if use_num_updates else None
|
99 |
+
parameters = list(parameters)
|
100 |
+
self.shadow_params = [p.clone().detach() for p in parameters]
|
101 |
+
self.collected_params = None
|
102 |
+
# By maintaining only a weakref to each parameter,
|
103 |
+
# we maintain the old GC behaviour of ExponentialMovingAverage:
|
104 |
+
# if the model goes out of scope but the ExponentialMovingAverage
|
105 |
+
# is kept, no references to the model or its parameters will be
|
106 |
+
# maintained, and the model will be cleaned up.
|
107 |
+
self._params_refs = [weakref.ref(p) for p in parameters]
|
108 |
+
self.update_after_step = update_after_step
|
109 |
+
self.tau = tau
|
110 |
+
|
111 |
+
def _get_parameters(
|
112 |
+
self, parameters: Optional[Iterable[torch.nn.Parameter]]
|
113 |
+
) -> Iterable[torch.nn.Parameter]:
|
114 |
+
if parameters is None:
|
115 |
+
parameters = [p() for p in self._params_refs]
|
116 |
+
if any(p is None for p in parameters):
|
117 |
+
raise ValueError(
|
118 |
+
"(One of) the parameters with which this ExponentialMovingAverage was initialized no longer exists (was garbage collected);"
|
119 |
+
" please either provide `parameters` explicitly or keep the model to which they belong from being garbage collected."
|
120 |
+
)
|
121 |
+
return parameters
|
122 |
+
else:
|
123 |
+
parameters = list(parameters)
|
124 |
+
if len(parameters) != len(self.shadow_params):
|
125 |
+
raise ValueError(
|
126 |
+
"Number of parameters passed as argument is different "
|
127 |
+
"from number of shadow parameters maintained by this "
|
128 |
+
"ExponentialMovingAverage"
|
129 |
+
)
|
130 |
+
return parameters
|
131 |
+
|
132 |
+
def get_current_decay(self):
|
133 |
+
epoch = max(self.num_updates - self.update_after_step - 1, 0.0)
|
134 |
+
if epoch <= 0:
|
135 |
+
return 0.0
|
136 |
+
value = tanh(epoch / self.tau) * self.decay
|
137 |
+
return value
|
138 |
+
|
139 |
+
def update(self, parameters: Optional[Iterable[torch.nn.Parameter]] = None) -> None:
|
140 |
+
"""
|
141 |
+
Update currently maintained parameters.
|
142 |
+
|
143 |
+
Call this every time the parameters are updated, such as the result of
|
144 |
+
the `optimizer.step()` call.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
parameters: Iterable of `torch.nn.Parameter`; usually the same set of
|
148 |
+
parameters used to initialize this object. If `None`, the
|
149 |
+
parameters with which this `ExponentialMovingAverage` was
|
150 |
+
initialized will be used.
|
151 |
+
"""
|
152 |
+
parameters = self._get_parameters(parameters)
|
153 |
+
decay = self.get_current_decay()
|
154 |
+
if self.num_updates is not None:
|
155 |
+
self.num_updates += 1
|
156 |
+
|
157 |
+
one_minus_decay = 1.0 - decay
|
158 |
+
with torch.no_grad():
|
159 |
+
for s_param, param in zip(self.shadow_params, parameters):
|
160 |
+
tmp = s_param - param
|
161 |
+
# tmp will be a new tensor so we can do in-place
|
162 |
+
tmp.mul_(one_minus_decay)
|
163 |
+
s_param.sub_(tmp)
|
164 |
+
|
165 |
+
def copy_to(
|
166 |
+
self, parameters: Optional[Iterable[torch.nn.Parameter]] = None
|
167 |
+
) -> None:
|
168 |
+
"""
|
169 |
+
Copy current averaged parameters into given collection of parameters.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
173 |
+
updated with the stored moving averages. If `None`, the
|
174 |
+
parameters with which this `ExponentialMovingAverage` was
|
175 |
+
initialized will be used.
|
176 |
+
"""
|
177 |
+
parameters = self._get_parameters(parameters)
|
178 |
+
for s_param, param in zip(self.shadow_params, parameters):
|
179 |
+
param.data.copy_(s_param.data)
|
180 |
+
|
181 |
+
def store(self, parameters: Optional[Iterable[torch.nn.Parameter]] = None) -> None:
|
182 |
+
"""
|
183 |
+
Save the current parameters for restoring later.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
187 |
+
temporarily stored. If `None`, the parameters of with which this
|
188 |
+
`ExponentialMovingAverage` was initialized will be used.
|
189 |
+
"""
|
190 |
+
parameters = self._get_parameters(parameters)
|
191 |
+
self.collected_params = [param.detach().clone() for param in parameters]
|
192 |
+
|
193 |
+
def restore(
|
194 |
+
self, parameters: Optional[Iterable[torch.nn.Parameter]] = None
|
195 |
+
) -> None:
|
196 |
+
"""
|
197 |
+
Restore the parameters stored with the `store` method.
|
198 |
+
Useful to validate the model with EMA parameters without affecting the
|
199 |
+
original optimization process. Store the parameters before the
|
200 |
+
`copy_to` method. After validation (or model saving), use this to
|
201 |
+
restore the former parameters.
|
202 |
+
|
203 |
+
Args:
|
204 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
205 |
+
updated with the stored parameters. If `None`, the
|
206 |
+
parameters with which this `ExponentialMovingAverage` was
|
207 |
+
initialized will be used.
|
208 |
+
"""
|
209 |
+
if self.collected_params is None:
|
210 |
+
raise RuntimeError(
|
211 |
+
"This ExponentialMovingAverage has no `store()`ed weights "
|
212 |
+
"to `restore()`"
|
213 |
+
)
|
214 |
+
parameters = self._get_parameters(parameters)
|
215 |
+
for c_param, param in zip(self.collected_params, parameters):
|
216 |
+
param.data.copy_(c_param.data)
|
217 |
+
|
218 |
+
@contextlib.contextmanager
|
219 |
+
def average_parameters(
|
220 |
+
self, parameters: Optional[Iterable[torch.nn.Parameter]] = None
|
221 |
+
):
|
222 |
+
r"""
|
223 |
+
Context manager for validation/inference with averaged parameters.
|
224 |
+
|
225 |
+
Equivalent to:
|
226 |
+
|
227 |
+
ema.store()
|
228 |
+
ema.copy_to()
|
229 |
+
try:
|
230 |
+
...
|
231 |
+
finally:
|
232 |
+
ema.restore()
|
233 |
+
|
234 |
+
Args:
|
235 |
+
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
236 |
+
updated with the stored parameters. If `None`, the
|
237 |
+
parameters with which this `ExponentialMovingAverage` was
|
238 |
+
initialized will be used.
|
239 |
+
"""
|
240 |
+
parameters = self._get_parameters(parameters)
|
241 |
+
self.store(parameters)
|
242 |
+
self.copy_to(parameters)
|
243 |
+
try:
|
244 |
+
yield
|
245 |
+
finally:
|
246 |
+
if not self.switch:
|
247 |
+
self.restore(parameters)
|
248 |
+
|
249 |
+
def to(self, device=None, dtype=None) -> None:
|
250 |
+
r"""Move internal buffers of the ExponentialMovingAverage to `device`.
|
251 |
+
|
252 |
+
Args:
|
253 |
+
device: like `device` argument to `torch.Tensor.to`
|
254 |
+
"""
|
255 |
+
# .to() on the tensors handles None correctly
|
256 |
+
self.shadow_params = [
|
257 |
+
(
|
258 |
+
p.to(device=device, dtype=dtype)
|
259 |
+
if p.is_floating_point()
|
260 |
+
else p.to(device=device)
|
261 |
+
)
|
262 |
+
for p in self.shadow_params
|
263 |
+
]
|
264 |
+
if self.collected_params is not None:
|
265 |
+
self.collected_params = [
|
266 |
+
(
|
267 |
+
p.to(device=device, dtype=dtype)
|
268 |
+
if p.is_floating_point()
|
269 |
+
else p.to(device=device)
|
270 |
+
)
|
271 |
+
for p in self.collected_params
|
272 |
+
]
|
273 |
+
return
|
274 |
+
|
275 |
+
def state_dict(self) -> dict:
|
276 |
+
r"""Returns the state of the ExponentialMovingAverage as a dict."""
|
277 |
+
# Following PyTorch conventions, references to tensors are returned:
|
278 |
+
# "returns a reference to the state and not its copy!" -
|
279 |
+
# https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict
|
280 |
+
return {
|
281 |
+
"decay": self.decay,
|
282 |
+
"num_updates": self.num_updates,
|
283 |
+
"shadow_params": self.shadow_params,
|
284 |
+
"collected_params": self.collected_params,
|
285 |
+
}
|
286 |
+
|
287 |
+
def load_state_dict(self, state_dict: dict) -> None:
|
288 |
+
r"""Loads the ExponentialMovingAverage state.
|
289 |
+
|
290 |
+
Args:
|
291 |
+
state_dict (dict): EMA state. Should be an object returned
|
292 |
+
from a call to :meth:`state_dict`.
|
293 |
+
"""
|
294 |
+
# deepcopy, to be consistent with module API
|
295 |
+
state_dict = copy.deepcopy(state_dict)
|
296 |
+
self.decay = state_dict["decay"]
|
297 |
+
if self.decay < 0.0 or self.decay > 1.0:
|
298 |
+
raise ValueError("Decay must be between 0 and 1")
|
299 |
+
self.num_updates = state_dict["num_updates"]
|
300 |
+
assert self.num_updates is None or isinstance(
|
301 |
+
self.num_updates, int
|
302 |
+
), "Invalid num_updates"
|
303 |
+
|
304 |
+
self.shadow_params = state_dict["shadow_params"]
|
305 |
+
assert isinstance(self.shadow_params, list), "shadow_params must be a list"
|
306 |
+
assert all(
|
307 |
+
isinstance(p, torch.Tensor) for p in self.shadow_params
|
308 |
+
), "shadow_params must all be Tensors"
|
309 |
+
|
310 |
+
self.collected_params = state_dict["collected_params"]
|
311 |
+
if self.collected_params is not None:
|
312 |
+
assert isinstance(
|
313 |
+
self.collected_params, list
|
314 |
+
), "collected_params must be a list"
|
315 |
+
assert all(
|
316 |
+
isinstance(p, torch.Tensor) for p in self.collected_params
|
317 |
+
), "collected_params must all be Tensors"
|
318 |
+
assert len(self.collected_params) == len(
|
319 |
+
self.shadow_params
|
320 |
+
), "collected_params and shadow_params had different lengths"
|
321 |
+
|
322 |
+
if len(self.shadow_params) == len(self._params_refs):
|
323 |
+
# Consistant with torch.optim.Optimizer, cast things to consistant
|
324 |
+
# device and dtype with the parameters
|
325 |
+
params = [p() for p in self._params_refs]
|
326 |
+
# If parameters have been garbage collected, just load the state
|
327 |
+
# we were given without change.
|
328 |
+
if not any(p is None for p in params):
|
329 |
+
# ^ parameter references are still good
|
330 |
+
for i, p in enumerate(params):
|
331 |
+
self.shadow_params[i] = self.shadow_params[i].to(
|
332 |
+
device=p.device, dtype=p.dtype
|
333 |
+
)
|
334 |
+
if self.collected_params is not None:
|
335 |
+
self.collected_params[i] = self.collected_params[i].to(
|
336 |
+
device=p.device, dtype=p.dtype
|
337 |
+
)
|
338 |
+
else:
|
339 |
+
raise ValueError(
|
340 |
+
"Tried to `load_state_dict()` with the wrong number of "
|
341 |
+
"parameters in the saved state."
|
342 |
+
)
|
flash3d/unidepth/utils/evaluation_depth.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Author: Luigi Piccinelli
|
3 |
+
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
|
4 |
+
"""
|
5 |
+
# We prefer not to install PyTorch3D in the package
|
6 |
+
# Code commented is how 3D metrics are computed
|
7 |
+
|
8 |
+
from collections import defaultdict
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
# from chamfer_distance import ChamferDistance
|
15 |
+
|
16 |
+
from unidepth.utils.constants import DEPTH_BINS
|
17 |
+
|
18 |
+
|
19 |
+
# chamfer_cls = ChamferDistance()
|
20 |
+
|
21 |
+
|
22 |
+
# def chamfer_dist(tensor1, tensor2):
|
23 |
+
# x_lengths = torch.tensor((tensor1.shape[1],), device=tensor1.device)
|
24 |
+
# y_lengths = torch.tensor((tensor2.shape[1],), device=tensor2.device)
|
25 |
+
# dist1, dist2, idx1, idx2 = chamfer_cls(
|
26 |
+
# tensor1, tensor2, x_lengths=x_lengths, y_lengths=y_lengths
|
27 |
+
# )
|
28 |
+
# return (torch.sqrt(dist1) + torch.sqrt(dist2)) / 2
|
29 |
+
|
30 |
+
|
31 |
+
# def auc(tensor1, tensor2, thresholds):
|
32 |
+
# x_lengths = torch.tensor((tensor1.shape[1],), device=tensor1.device)
|
33 |
+
# y_lengths = torch.tensor((tensor2.shape[1],), device=tensor2.device)
|
34 |
+
# dist1, dist2, idx1, idx2 = chamfer_cls(
|
35 |
+
# tensor1, tensor2, x_lengths=x_lengths, y_lengths=y_lengths
|
36 |
+
# )
|
37 |
+
# # compute precision recall
|
38 |
+
# precisions = [(dist1 < threshold).sum() / dist1.numel() for threshold in thresholds]
|
39 |
+
# recalls = [(dist2 < threshold).sum() / dist2.numel() for threshold in thresholds]
|
40 |
+
# auc_value = torch.trapz(
|
41 |
+
# torch.tensor(precisions, device=tensor1.device),
|
42 |
+
# torch.tensor(recalls, device=tensor1.device),
|
43 |
+
# )
|
44 |
+
# return auc_value
|
45 |
+
|
46 |
+
|
47 |
+
def delta(tensor1, tensor2, exponent):
|
48 |
+
inlier = torch.maximum((tensor1 / tensor2), (tensor2 / tensor1))
|
49 |
+
return (inlier < 1.25**exponent).to(torch.float32).mean()
|
50 |
+
|
51 |
+
|
52 |
+
def ssi(tensor1, tensor2, qtl=0.05):
|
53 |
+
stability_mat = 1e-9 * torch.eye(2, device=tensor1.device)
|
54 |
+
error = (tensor1 - tensor2).abs()
|
55 |
+
mask = error < torch.quantile(error, 1 - qtl)
|
56 |
+
tensor1_mask = tensor1[mask]
|
57 |
+
tensor2_mask = tensor2[mask]
|
58 |
+
tensor2_one = torch.stack(
|
59 |
+
[tensor2_mask.detach(), torch.ones_like(tensor2_mask).detach()], dim=1
|
60 |
+
)
|
61 |
+
scale_shift = torch.inverse(tensor2_one.T @ tensor2_one + stability_mat) @ (
|
62 |
+
tensor2_one.T @ tensor1_mask.unsqueeze(1)
|
63 |
+
)
|
64 |
+
scale, shift = scale_shift.squeeze().chunk(2, dim=0)
|
65 |
+
return tensor2 * scale + shift
|
66 |
+
# tensor2_one = torch.stack([tensor2.detach(), torch.ones_like(tensor2).detach()], dim=1)
|
67 |
+
# scale_shift = torch.inverse(tensor2_one.T @ tensor2_one + stability_mat) @ (tensor2_one.T @ tensor1.unsqueeze(1))
|
68 |
+
# scale, shift = scale_shift.squeeze().chunk(2, dim=0)
|
69 |
+
# return tensor2 * scale + shift
|
70 |
+
|
71 |
+
|
72 |
+
def d1_ssi(tensor1, tensor2):
|
73 |
+
delta_ = delta(tensor1, ssi(tensor1, tensor2), 1.0)
|
74 |
+
return delta_
|
75 |
+
|
76 |
+
|
77 |
+
def d_auc(tensor1, tensor2):
|
78 |
+
exponents = torch.linspace(0.01, 5.0, steps=100, device=tensor1.device)
|
79 |
+
deltas = [delta(tensor1, tensor2, exponent) for exponent in exponents]
|
80 |
+
return torch.trapz(torch.tensor(deltas, device=tensor1.device), exponents) / 5.0
|
81 |
+
|
82 |
+
|
83 |
+
# def f1_score(tensor1, tensor2, thresholds):
|
84 |
+
# x_lengths = torch.tensor((tensor1.shape[1],), device=tensor1.device)
|
85 |
+
# y_lengths = torch.tensor((tensor2.shape[1],), device=tensor2.device)
|
86 |
+
# dist1, dist2, idx1, idx2 = chamfer_cls(
|
87 |
+
# tensor1, tensor2, x_lengths=x_lengths, y_lengths=y_lengths
|
88 |
+
# )
|
89 |
+
# # compute precision recall
|
90 |
+
# precisions = [(dist1 < threshold).sum() / dist1.numel() for threshold in thresholds]
|
91 |
+
# recalls = [(dist2 < threshold).sum() / dist2.numel() for threshold in thresholds]
|
92 |
+
# precisions = torch.tensor(precisions, device=tensor1.device)
|
93 |
+
# recalls = torch.tensor(recalls, device=tensor1.device)
|
94 |
+
# f1_thresholds = 2 * precisions * recalls / (precisions + recalls)
|
95 |
+
# f1_thresholds = torch.where(
|
96 |
+
# torch.isnan(f1_thresholds), torch.zeros_like(f1_thresholds), f1_thresholds
|
97 |
+
# )
|
98 |
+
# f1_value = torch.trapz(f1_thresholds) / len(thresholds)
|
99 |
+
# return f1_value
|
100 |
+
|
101 |
+
|
102 |
+
DICT_METRICS = {
|
103 |
+
"d1": partial(delta, exponent=1.0),
|
104 |
+
"d2": partial(delta, exponent=2.0),
|
105 |
+
"d3": partial(delta, exponent=3.0),
|
106 |
+
"rmse": lambda gt, pred: torch.sqrt(((gt - pred) ** 2).mean()),
|
107 |
+
"rmselog": lambda gt, pred: torch.sqrt(
|
108 |
+
((torch.log(gt) - torch.log(pred)) ** 2).mean()
|
109 |
+
),
|
110 |
+
"arel": lambda gt, pred: (torch.abs(gt - pred) / gt).mean(),
|
111 |
+
"sqrel": lambda gt, pred: (((gt - pred) ** 2) / gt).mean(),
|
112 |
+
"log10": lambda gt, pred: torch.abs(torch.log10(pred) - torch.log10(gt)).mean(),
|
113 |
+
"silog": lambda gt, pred: 100 * torch.std(torch.log(pred) - torch.log(gt)).mean(),
|
114 |
+
"medianlog": lambda gt, pred: 100
|
115 |
+
* (torch.log(pred) - torch.log(gt)).median().abs(),
|
116 |
+
"d_auc": d_auc,
|
117 |
+
"d1_ssi": d1_ssi,
|
118 |
+
}
|
119 |
+
|
120 |
+
|
121 |
+
# DICT_METRICS_3D = {
|
122 |
+
# "chamfer": lambda gt, pred, thresholds: chamfer_dist(
|
123 |
+
# gt.unsqueeze(0).permute(0, 2, 1), pred.unsqueeze(0).permute(0, 2, 1)
|
124 |
+
# ),
|
125 |
+
# "F1": lambda gt, pred, thresholds: f1_score(
|
126 |
+
# gt.unsqueeze(0).permute(0, 2, 1),
|
127 |
+
# pred.unsqueeze(0).permute(0, 2, 1),
|
128 |
+
# thresholds=thresholds,
|
129 |
+
# ),
|
130 |
+
# }
|
131 |
+
|
132 |
+
|
133 |
+
DICT_METRICS_D = {
|
134 |
+
"a1": lambda gt, pred: (torch.maximum((gt / pred), (pred / gt)) > 1.25**1.0).to(
|
135 |
+
torch.float32
|
136 |
+
),
|
137 |
+
"abs_rel": lambda gt, pred: (torch.abs(gt - pred) / gt),
|
138 |
+
}
|
139 |
+
|
140 |
+
|
141 |
+
def eval_depth(
|
142 |
+
gts: torch.Tensor, preds: torch.Tensor, masks: torch.Tensor, max_depth=None
|
143 |
+
):
|
144 |
+
summary_metrics = defaultdict(list)
|
145 |
+
preds = F.interpolate(preds, gts.shape[-2:], mode="bilinear")
|
146 |
+
for i, (gt, pred, mask) in enumerate(zip(gts, preds, masks)):
|
147 |
+
if max_depth is not None:
|
148 |
+
mask = torch.logical_and(mask, gt <= max_depth)
|
149 |
+
for name, fn in DICT_METRICS.items():
|
150 |
+
summary_metrics[name].append(fn(gt[mask], pred[mask]).mean())
|
151 |
+
return {name: torch.stack(vals, dim=0) for name, vals in summary_metrics.items()}
|
152 |
+
|
153 |
+
|
154 |
+
# def eval_3d(
|
155 |
+
# gts: torch.Tensor, preds: torch.Tensor, masks: torch.Tensor, thresholds=None
|
156 |
+
# ):
|
157 |
+
# summary_metrics = defaultdict(list)
|
158 |
+
# w_max = min(gts.shape[-1] // 4, 400)
|
159 |
+
# gts = F.interpolate(
|
160 |
+
# gts, (int(w_max * gts.shape[-2] / gts.shape[-1]), w_max), mode="nearest"
|
161 |
+
# )
|
162 |
+
# preds = F.interpolate(preds, gts.shape[-2:], mode="nearest")
|
163 |
+
# masks = F.interpolate(
|
164 |
+
# masks.to(torch.float32), gts.shape[-2:], mode="nearest"
|
165 |
+
# ).bool()
|
166 |
+
# for i, (gt, pred, mask) in enumerate(zip(gts, preds, masks)):
|
167 |
+
# if not torch.any(mask):
|
168 |
+
# continue
|
169 |
+
# for name, fn in DICT_METRICS_3D.items():
|
170 |
+
# summary_metrics[name].append(
|
171 |
+
# fn(gt[:, mask.squeeze()], pred[:, mask.squeeze()], thresholds).mean()
|
172 |
+
# )
|
173 |
+
# return {name: torch.stack(vals, dim=0) for name, vals in summary_metrics.items()}
|