|
|
|
|
|
import shlex |
|
import subprocess |
|
|
|
import gradio as gr |
|
|
|
from model import Model |
|
from settings import CACHE_EXAMPLES, MAX_SEED |
|
from utils import randomize_seed_fn |
|
|
|
|
|
def create_demo(model: Model) -> gr.Blocks: |
|
subprocess.run( |
|
shlex.split( |
|
'wget https://raw.githubusercontent.com/openai/shap-e/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/examples/example_data/corgi.png -O corgi.png' |
|
)) |
|
examples = ['corgi.png'] |
|
|
|
def process_example_fn(image_path: str) -> str: |
|
return model.run_image(image_path, output_image_size=128) |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Box(): |
|
image = gr.Image(label='Input image', |
|
show_label=False, |
|
type='filepath') |
|
run_button = gr.Button('Run') |
|
result = gr.Video(label='Result', elem_id='result-2') |
|
with gr.Accordion('Advanced options', open=False): |
|
seed = gr.Slider(label='Seed', |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0) |
|
randomize_seed = gr.Checkbox(label='Randomize seed', |
|
value=True) |
|
guidance_scale = gr.Slider(label='Guidance scale', |
|
minimum=1, |
|
maximum=20, |
|
step=0.1, |
|
value=3.0) |
|
num_inference_steps = gr.Slider( |
|
label='Number of inference steps', |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=64) |
|
image_size = gr.Slider(label='Image size', |
|
minimum=64, |
|
maximum=256, |
|
step=64, |
|
value=128) |
|
render_mode = gr.Dropdown(label='Render mode', |
|
choices=['nerf', 'stf'], |
|
value='nerf', |
|
visible=False) |
|
|
|
gr.Examples(examples=examples, |
|
inputs=image, |
|
outputs=result, |
|
fn=process_example_fn, |
|
cache_examples=CACHE_EXAMPLES) |
|
|
|
inputs = [ |
|
image, |
|
seed, |
|
guidance_scale, |
|
num_inference_steps, |
|
image_size, |
|
render_mode, |
|
] |
|
|
|
run_button.click( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
).then( |
|
fn=model.run_image, |
|
inputs=inputs, |
|
outputs=result, |
|
) |
|
return demo |
|
|