|
|
|
|
|
import pathlib |
|
import shlex |
|
import subprocess |
|
|
|
import gradio as gr |
|
import PIL.Image |
|
import spaces |
|
|
|
from model import Model |
|
from settings import CACHE_EXAMPLES, MAX_SEED |
|
from utils import randomize_seed_fn |
|
|
|
|
|
def create_demo(model: Model) -> gr.Blocks: |
|
if not pathlib.Path("corgi.png").exists(): |
|
subprocess.run( |
|
shlex.split( |
|
"wget https://raw.githubusercontent.com/openai/shap-e/d99cedaea18e0989e340163dbaeb4b109fa9e8ec/shap_e/examples/example_data/corgi.png -O corgi.png" |
|
) |
|
) |
|
examples = ["corgi.png"] |
|
|
|
@spaces.GPU |
|
def process_example_fn(image_path: str) -> str: |
|
return model.run_image(image_path) |
|
|
|
@spaces.GPU |
|
def run(image: PIL.Image.Image, seed: int, guidance_scale: float, num_inference_steps: int) -> str: |
|
return model.run_image(image, seed, guidance_scale, num_inference_steps) |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Box(): |
|
image = gr.Image(label="Input image", show_label=False, type="pil") |
|
run_button = gr.Button("Run") |
|
result = gr.Model3D(label="Result", show_label=False) |
|
with gr.Accordion("Advanced options", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=1, |
|
maximum=20, |
|
step=0.1, |
|
value=3.0, |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=2, |
|
maximum=100, |
|
step=1, |
|
value=64, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=image, |
|
outputs=result, |
|
fn=process_example_fn, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
inputs = [ |
|
image, |
|
seed, |
|
guidance_scale, |
|
num_inference_steps, |
|
] |
|
|
|
run_button.click( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=run, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name="image-to-3d", |
|
) |
|
return demo |
|
|