|
|
|
|
|
from __future__ import annotations |
|
|
|
import gradio as gr |
|
import numpy as np |
|
|
|
from model import Model |
|
|
|
DESCRIPTION = "# [AvantGAN](https://github.com/ellemcfarlane/AvantGAN)" |
|
|
|
|
|
def get_sample_image_url(name: str) -> str: |
|
sample_image_dir = "https://huggingface.co/spaces/ellemac/avantGAN/resolve/main/samples" |
|
return f"{sample_image_dir}/{name}.png" |
|
|
|
|
|
def get_sample_image_markdown(name: str) -> str: |
|
url = get_sample_image_url(name) |
|
size = 128 if ("stylegan3" in name or "original" in name) else 64 |
|
return f""" |
|
- size: {size}x{size} |
|
![sample images]({url})""" |
|
|
|
|
|
model = Model() |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("App"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name = gr.Dropdown( |
|
label="Model", choices=list(model.MODEL_DICT.keys()), value="stylegan3-abstract" |
|
) |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.uint32).max, step=1, value=0) |
|
run_button = gr.Button() |
|
with gr.Column(): |
|
result = gr.Image(label="Result", elem_id="result", width=300, height=300) |
|
|
|
with gr.TabItem("Sample Images"): |
|
with gr.Row(): |
|
model_name2 = gr.Dropdown( |
|
[ |
|
"stylegan3-abstract", |
|
"stylegan3-high-fidelity", |
|
"ada-dcgan", |
|
"original-training-data", |
|
], |
|
value="stylegan3-abstract", |
|
label="Model", |
|
) |
|
with gr.Row(): |
|
text = get_sample_image_markdown(model_name2.value) |
|
sample_images = gr.Markdown(text) |
|
|
|
run_button.click( |
|
fn=model.set_model_and_generate_image, |
|
inputs=[ |
|
model_name, |
|
seed, |
|
], |
|
outputs=result, |
|
api_name="run", |
|
) |
|
model_name2.change( |
|
fn=get_sample_image_markdown, |
|
inputs=model_name2, |
|
outputs=sample_images, |
|
queue=False, |
|
api_name=False, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|