elliesleightholm's picture
initial commit
3e8a38e
raw
history blame
1.97 kB
import gradio as gr
from transformers import AutoModel, AutoProcessor
import torch
import requests
from PIL import Image
from io import BytesIO
fashion_items = ['top', 'trousers', 'hat', 'jumper']
# Load model and processor
model_name = 'Marqo/marqo-fashionSigLIP'
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
# Preprocess and normalize text data
with torch.no_grad():
# Ensure truncation and padding are activated
processed_texts = processor(
text=fashion_items,
return_tensors="pt",
truncation=True, # Ensure text is truncated to fit model input size
padding=True # Pad shorter sequences so that all are the same length
)['input_ids']
text_features = model.get_text_features(processed_texts)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
# Prediction function
def predict_from_url(url):
# Check if the URL is empty
if not url:
return {"Error": "Please input a URL"}
try:
image = Image.open(BytesIO(requests.get(url).content))
except Exception as e:
return {"Error": f"Failed to load image: {str(e)}"}
processed_image = processor(images=image, return_tensors="pt")['pixel_values']
with torch.no_grad():
image_features = model.get_image_features(processed_image)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
return {fashion_items[i]: float(text_probs[0, i]) for i in range(len(fashion_items))}
# Gradio interface
demo = gr.Interface(
fn=predict_from_url,
inputs=gr.Textbox(label="Enter Image URL"),
outputs=gr.Label(label="Classification Results"),
title="Fashion Item Classifier",
allow_flagging="never"
)
# Launch the interface
demo.launch()