Spaces:
Sleeping
Sleeping
File size: 6,196 Bytes
7c4b306 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import sys
import json
import os.path
import logging
import argparse
from tqdm import tqdm
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import clip
from collections import defaultdict
from PIL import Image
import faiss
import os
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cudnn.benchmark = True
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed(0)
import gc
class ClipRetrieval():
def __init__(self, index_name):
self.datastore = faiss.read_index(index_name)
#self.datastore.nprobe=25
def get_nns(self, query_img, k=20):
#get k nearest image
D, I = self.datastore.search(query_img, k)
return D, I[:,:k]
class EvalDataset():
def __init__(self, dataset_splits, images_dir, images_names, clip_retrieval_processor, eval_split="val_images"):
super().__init__()
with open(dataset_splits) as f:
self.split = json.load(f)
self.split = self.split[eval_split]
self.images_dir= images_dir
with open(args.images_names) as f:
self.images_names = json.load(f)
self.clip_retrieval_processor = clip_retrieval_processor
def __getitem__(self, i):
coco_id = self.split[i]
image_filename= self.images_dir+self.images_names[coco_id]
img_open = Image.open(image_filename).copy()
img = np.array(img_open)
if len(img.shape) ==2 or img.shape[-1]!=3: #convert grey or CMYK to RGB
img_open = img_open.convert('RGB')
gc.collect()
print("img_open",np.array(img_open).shape)
#inputs_features_retrieval = self.clip_retrieval_processor(img_open).unsqueeze(0)
return self.clip_retrieval_processor(img_open).unsqueeze(0), coco_id
def __len__(self):
return len(self.split)
def evaluate(args):
#load data of the datastore (i.e., captions)
with open(args.index_captions) as f:
data_datastore = json.load(f)
datastore = ClipRetrieval(args.datastore_path)
datastore_name = args.datastore_path.split("/")[-1]
#load clip to encode the images that we want to retrieve captions for
clip_retrieval_model, clip_retrieval_feature_extractor = clip.load("RN50x64", device=device)
clip_retrieval_model.eval()
#data_loader to get images that we want to retrieve captions for
data_loader = torch.utils.data.DataLoader(
EvalDataset(
args.dataset_splits,
args.images_dir,
args.images_names,
clip_retrieval_feature_extractor,
args.split),
batch_size=1,
shuffle=True,
num_workers=1,
pin_memory=True
)
print("device",device)
nearest_caps={}
for data in tqdm(data_loader):
inputs_features_retrieval, coco_id = data
coco_id = coco_id[0]
#normalize images to retrieve (since datastore has also normalized captions)
inputs_features_retrieval = inputs_features_retrieval.to(device)
image_retrieval_features = clip_retrieval_model.encode_image(inputs_features_retrieval[0])
image_retrieval_features /= image_retrieval_features.norm(dim=-1, keepdim=True)
image_retrieval_features=image_retrieval_features.detach().cpu().numpy().astype(np.float32)
print("inputs_features_retrieval",inputs_features_retrieval.size())
print("image_retrieval_features",image_retrieval_features.shape)
D, nearest_ids=datastore.get_nns(image_retrieval_features, k=5)
print("D size", D.shape)
print("nea", nearest_ids.shape)
gc.collect()
#Since at inference batch is 1
D=D[0]
nearest_ids=nearest_ids[0]
list_of_similar_caps=defaultdict(list)
for index in range(len(nearest_ids)):
nearest_id = str(nearest_ids[index])
nearest_cap=data_datastore[nearest_id]
if len(nearest_cap.split()) > args.max_caption_len:
print("retrieve cap too big" )
continue
#distance=D[index]
#list_of_similar_caps[datastore_name].append((nearest_cap, str(distance)))
#list_of_similar_caps[datastore_name].append(nearest_cap)
#nearest_caps[str(coco_id)]=list_of_similar_caps
#save results
outputs_dir = os.path.join(args.output_path, "retrieved_caps")
if not os.path.exists(outputs_dir):
os.makedirs(outputs_dir)
data_name=dataset_splits.split("/")[-1]
name = "nearest_caps_"+data_name +"_w_"+datastore_name + "_"+ args.split
results_output_file_name = os.path.join(outputs_dir, name + ".json")
json.dump(nearest_caps, open(results_output_file_name, "w"))
def check_args(args):
parser = argparse.ArgumentParser()
#Info of the dataset to evaluate on (vizwiz, flick30k, msr-vtt)
parser.add_argument("--images_dir",help="Folder where the preprocessed image data is located", default="data/vizwiz/images")
parser.add_argument("--dataset_splits",help="File containing the dataset splits", default="data/vizwiz/dataset_splits.json")
parser.add_argument("--images_names",help="File containing the images names per id", default="data/vizwiz/images_names.json")
parser.add_argument("--split", default="val_images", choices=["val_images", "test_images"])
parser.add_argument("--max-caption-len", type=int, default=25)
#Which datastore to use (web, human)
parser.add_argument("--datastore_path", type=str, default="datastore2/vizwiz/vizwiz")
parser.add_argument("--index_captions",
help="File containing the captions of the datastore per id", default="datastore2/vizwiz/vizwiz.json")
parser.add_argument("--output-path",help="Folder where to store outputs", default="eval_vizwiz_with_datastore_from_vizwiz.json")
parsed_args = parser.parse_args(args)
return parsed_args
if __name__ == "__main__":
args = check_args(sys.argv[1:])
logging.basicConfig(
format='%(levelname)s: %(message)s', level=logging.INFO)
logging.info(args)
evaluate(args)
|