import sys import json import os.path import logging import argparse from tqdm import tqdm import numpy as np import torch import torch.backends.cudnn as cudnn import clip from collections import defaultdict from PIL import Image import faiss import os device = torch.device("cuda" if torch.cuda.is_available() else "cpu") cudnn.benchmark = True torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed(0) import gc class ClipRetrieval(): def __init__(self, index_name): self.datastore = faiss.read_index(index_name) #self.datastore.nprobe=25 def get_nns(self, query_img, k=20): #get k nearest image D, I = self.datastore.search(query_img, k) return D, I[:,:k] class EvalDataset(): def __init__(self, dataset_splits, images_dir, images_names, clip_retrieval_processor, eval_split="val_images"): super().__init__() with open(dataset_splits) as f: self.split = json.load(f) self.split = self.split[eval_split] self.images_dir= images_dir with open(args.images_names) as f: self.images_names = json.load(f) self.clip_retrieval_processor = clip_retrieval_processor def __getitem__(self, i): coco_id = self.split[i] image_filename= self.images_dir+self.images_names[coco_id] img_open = Image.open(image_filename).copy() img = np.array(img_open) if len(img.shape) ==2 or img.shape[-1]!=3: #convert grey or CMYK to RGB img_open = img_open.convert('RGB') gc.collect() print("img_open",np.array(img_open).shape) #inputs_features_retrieval = self.clip_retrieval_processor(img_open).unsqueeze(0) return self.clip_retrieval_processor(img_open).unsqueeze(0), coco_id def __len__(self): return len(self.split) def evaluate(args): #load data of the datastore (i.e., captions) with open(args.index_captions) as f: data_datastore = json.load(f) datastore = ClipRetrieval(args.datastore_path) datastore_name = args.datastore_path.split("/")[-1] #load clip to encode the images that we want to retrieve captions for clip_retrieval_model, clip_retrieval_feature_extractor = clip.load("RN50x64", device=device) clip_retrieval_model.eval() #data_loader to get images that we want to retrieve captions for data_loader = torch.utils.data.DataLoader( EvalDataset( args.dataset_splits, args.images_dir, args.images_names, clip_retrieval_feature_extractor, args.split), batch_size=1, shuffle=True, num_workers=1, pin_memory=True ) print("device",device) nearest_caps={} for data in tqdm(data_loader): inputs_features_retrieval, coco_id = data coco_id = coco_id[0] #normalize images to retrieve (since datastore has also normalized captions) inputs_features_retrieval = inputs_features_retrieval.to(device) image_retrieval_features = clip_retrieval_model.encode_image(inputs_features_retrieval[0]) image_retrieval_features /= image_retrieval_features.norm(dim=-1, keepdim=True) image_retrieval_features=image_retrieval_features.detach().cpu().numpy().astype(np.float32) print("inputs_features_retrieval",inputs_features_retrieval.size()) print("image_retrieval_features",image_retrieval_features.shape) D, nearest_ids=datastore.get_nns(image_retrieval_features, k=5) print("D size", D.shape) print("nea", nearest_ids.shape) gc.collect() #Since at inference batch is 1 D=D[0] nearest_ids=nearest_ids[0] list_of_similar_caps=defaultdict(list) for index in range(len(nearest_ids)): nearest_id = str(nearest_ids[index]) nearest_cap=data_datastore[nearest_id] if len(nearest_cap.split()) > args.max_caption_len: print("retrieve cap too big" ) continue #distance=D[index] #list_of_similar_caps[datastore_name].append((nearest_cap, str(distance))) #list_of_similar_caps[datastore_name].append(nearest_cap) #nearest_caps[str(coco_id)]=list_of_similar_caps #save results outputs_dir = os.path.join(args.output_path, "retrieved_caps") if not os.path.exists(outputs_dir): os.makedirs(outputs_dir) data_name=dataset_splits.split("/")[-1] name = "nearest_caps_"+data_name +"_w_"+datastore_name + "_"+ args.split results_output_file_name = os.path.join(outputs_dir, name + ".json") json.dump(nearest_caps, open(results_output_file_name, "w")) def check_args(args): parser = argparse.ArgumentParser() #Info of the dataset to evaluate on (vizwiz, flick30k, msr-vtt) parser.add_argument("--images_dir",help="Folder where the preprocessed image data is located", default="data/vizwiz/images") parser.add_argument("--dataset_splits",help="File containing the dataset splits", default="data/vizwiz/dataset_splits.json") parser.add_argument("--images_names",help="File containing the images names per id", default="data/vizwiz/images_names.json") parser.add_argument("--split", default="val_images", choices=["val_images", "test_images"]) parser.add_argument("--max-caption-len", type=int, default=25) #Which datastore to use (web, human) parser.add_argument("--datastore_path", type=str, default="datastore2/vizwiz/vizwiz") parser.add_argument("--index_captions", help="File containing the captions of the datastore per id", default="datastore2/vizwiz/vizwiz.json") parser.add_argument("--output-path",help="Folder where to store outputs", default="eval_vizwiz_with_datastore_from_vizwiz.json") parsed_args = parser.parse_args(args) return parsed_args if __name__ == "__main__": args = check_args(sys.argv[1:]) logging.basicConfig( format='%(levelname)s: %(message)s', level=logging.INFO) logging.info(args) evaluate(args)