Spaces:
Runtime error
Runtime error
App updated
Browse files- .gitignore +1 -0
- analyzer.py +80 -0
- app.py +49 -43
- news_pipeline.py +0 -61
- pipeline.py +16 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
analyzer.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Optional, Union
|
2 |
+
|
3 |
+
from transformers import (
|
4 |
+
AutoModelForSequenceClassification,
|
5 |
+
AutoModelForTokenClassification,
|
6 |
+
AutoTokenizer,
|
7 |
+
TokenClassificationPipeline,
|
8 |
+
)
|
9 |
+
|
10 |
+
from pipeline import NewsPipeline
|
11 |
+
|
12 |
+
CATEGORY_EMOJIS = {
|
13 |
+
"Automobile": "🚗",
|
14 |
+
"Entertainment": "🍿",
|
15 |
+
"Politics": "⚖️",
|
16 |
+
"Science": "🧪",
|
17 |
+
"Sports": "🏀",
|
18 |
+
"Technology": "💻",
|
19 |
+
"World": "🌍",
|
20 |
+
}
|
21 |
+
FAKE_EMOJIS = {"Fake": "👻", "Real": "👍"}
|
22 |
+
CLICKBAIT_EMOJIS = {"Clickbait": "🎣", "Normal": "✅"}
|
23 |
+
|
24 |
+
|
25 |
+
class NewsAnalyzer:
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
category_model_name: str,
|
29 |
+
fake_model_name: str,
|
30 |
+
clickbait_model_name: str,
|
31 |
+
ner_model_name: str,
|
32 |
+
) -> None:
|
33 |
+
self.category_pipe = NewsPipeline(
|
34 |
+
model=AutoModelForSequenceClassification.from_pretrained(
|
35 |
+
category_model_name
|
36 |
+
),
|
37 |
+
tokenizer=AutoTokenizer.from_pretrained(category_model_name),
|
38 |
+
emojis=CATEGORY_EMOJIS,
|
39 |
+
)
|
40 |
+
self.fake_pipe = NewsPipeline(
|
41 |
+
model=AutoModelForSequenceClassification.from_pretrained(fake_model_name),
|
42 |
+
tokenizer=AutoTokenizer.from_pretrained(fake_model_name),
|
43 |
+
emojis=FAKE_EMOJIS,
|
44 |
+
)
|
45 |
+
self.clickbait_pipe = NewsPipeline(
|
46 |
+
model=AutoModelForSequenceClassification.from_pretrained(
|
47 |
+
clickbait_model_name
|
48 |
+
),
|
49 |
+
tokenizer=AutoTokenizer.from_pretrained(clickbait_model_name),
|
50 |
+
emojis=CLICKBAIT_EMOJIS,
|
51 |
+
)
|
52 |
+
self.ner_pipe = TokenClassificationPipeline(
|
53 |
+
model=AutoModelForTokenClassification.from_pretrained(ner_model_name),
|
54 |
+
tokenizer=AutoTokenizer.from_pretrained(ner_model_name),
|
55 |
+
aggregation_strategy="simple",
|
56 |
+
)
|
57 |
+
|
58 |
+
def __call__(
|
59 |
+
self, headline: str, content: Optional[str] = None
|
60 |
+
) -> Dict[str, Union[str, float]]:
|
61 |
+
return {
|
62 |
+
"category": self.category_pipe(headline=headline, content=content),
|
63 |
+
"fake": self.fake_pipe(headline=headline, content=content),
|
64 |
+
"clickbait": self.clickbait_pipe(headline=headline, content=None),
|
65 |
+
"ner": {
|
66 |
+
"headline": self.ner_pipe(headline),
|
67 |
+
"content": self.ner_pipe(content) if content else None,
|
68 |
+
},
|
69 |
+
}
|
70 |
+
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
analyzer = NewsAnalyzer(
|
74 |
+
category_model_name="elozano/news-category",
|
75 |
+
fake_model_name="elozano/news-fake",
|
76 |
+
clickbait_model_name="elozano/news-clickbait",
|
77 |
+
ner_model_name="dslim/bert-base-NER",
|
78 |
+
)
|
79 |
+
prediction = analyzer(headline="Lakers Won!")
|
80 |
+
print(prediction)
|
app.py
CHANGED
@@ -1,68 +1,74 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from annotated_text import annotated_text
|
3 |
-
from news_pipeline import NewsPipeline
|
4 |
|
5 |
-
|
6 |
-
"Automobile": "🚗",
|
7 |
-
"Entertainment": "🍿",
|
8 |
-
"Politics": "⚖️",
|
9 |
-
"Science": "🧪",
|
10 |
-
"Sports": "🏀",
|
11 |
-
"Technology": "💻",
|
12 |
-
"World": "🌍",
|
13 |
-
}
|
14 |
-
FAKE_EMOJIS = {"Fake": "👻", "Real": "👍"}
|
15 |
-
CLICKBAIT_EMOJIS = {"Clickbait": "🎣", "Normal": "✅"}
|
16 |
|
17 |
|
18 |
-
def
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
st.title("📰 News Analyzer")
|
21 |
-
headline = st.text_input("
|
22 |
-
content = st.
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
with st.spinner("Analyzing article..."):
|
36 |
-
prediction = news_pipe(headline, content)
|
37 |
-
col1, _, col2 = st.columns([2, 1, 6])
|
38 |
with col1:
|
39 |
st.subheader("Analysis:")
|
|
|
40 |
st.markdown(
|
41 |
-
f"{
|
42 |
)
|
|
|
43 |
st.markdown(
|
44 |
-
f"{
|
45 |
)
|
|
|
46 |
st.markdown(
|
47 |
-
f"{
|
48 |
)
|
|
|
49 |
with col2:
|
50 |
-
st.subheader("Headline")
|
51 |
-
annotated_text(
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
-
def
|
|
|
|
|
57 |
start = 0
|
58 |
parsed_text = []
|
59 |
-
for
|
60 |
-
parsed_text.append(text[start :
|
61 |
-
parsed_text.append((
|
62 |
-
start =
|
63 |
parsed_text.append(text[start:])
|
64 |
return parsed_text
|
65 |
|
66 |
|
67 |
if __name__ == "__main__":
|
68 |
-
|
|
|
1 |
+
from typing import Dict, List, Tuple, Union
|
2 |
+
|
3 |
import streamlit as st
|
4 |
from annotated_text import annotated_text
|
|
|
5 |
|
6 |
+
from analyzer import NewsAnalyzer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
+
def run() -> None:
|
10 |
+
analyzer = NewsAnalyzer(
|
11 |
+
category_model_name="elozano/news-category",
|
12 |
+
fake_model_name="elozano/news-fake",
|
13 |
+
clickbait_model_name="elozano/news-clickbait",
|
14 |
+
ner_model_name="dslim/bert-base-NER",
|
15 |
+
)
|
16 |
st.title("📰 News Analyzer")
|
17 |
+
headline = st.text_input("Headline:")
|
18 |
+
content = st.text_input("Content:")
|
19 |
+
if headline == "":
|
20 |
+
st.error("Please, provide a headline.")
|
21 |
+
else:
|
22 |
+
if content == "":
|
23 |
+
st.warning(
|
24 |
+
"Please, provide both headline and content to achieve better results."
|
25 |
+
)
|
26 |
+
button = st.button("Analyze")
|
27 |
+
if button:
|
28 |
+
predictions = analyzer(headline=headline, content=content)
|
29 |
+
col1, _, col2 = st.columns([2, 1, 5])
|
30 |
|
|
|
|
|
|
|
31 |
with col1:
|
32 |
st.subheader("Analysis:")
|
33 |
+
category_prediction = predictions["category"]
|
34 |
st.markdown(
|
35 |
+
f"{category_prediction['emoji']} **Category**: {category_prediction['label']}"
|
36 |
)
|
37 |
+
clickbait_prediction = predictions["clickbait"]
|
38 |
st.markdown(
|
39 |
+
f"{clickbait_prediction['emoji']} **Clickbait**: {'Yes' if clickbait_prediction['label'] == 'Clickbait' else 'No'}"
|
40 |
)
|
41 |
+
fake_prediction = predictions["fake"]
|
42 |
st.markdown(
|
43 |
+
f"{fake_prediction['emoji']} **Fake**: {'Yes' if fake_prediction['label'] == 'Fake' else 'No'}"
|
44 |
)
|
45 |
+
|
46 |
with col2:
|
47 |
+
st.subheader("Headline:")
|
48 |
+
annotated_text(
|
49 |
+
*parse_entities(headline, predictions["ner"]["headline"])
|
50 |
+
)
|
51 |
+
st.subheader("Content:")
|
52 |
+
if content:
|
53 |
+
annotated_text(
|
54 |
+
*parse_entities(content, predictions["ner"]["content"])
|
55 |
+
)
|
56 |
+
else:
|
57 |
+
st.error("Content not provided.")
|
58 |
|
59 |
|
60 |
+
def parse_entities(
|
61 |
+
text: str, entities: Dict[str, Union[str, int]]
|
62 |
+
) -> List[Union[str, Tuple[str, str]]]:
|
63 |
start = 0
|
64 |
parsed_text = []
|
65 |
+
for entity in entities:
|
66 |
+
parsed_text.append(text[start : entity["start"]])
|
67 |
+
parsed_text.append((entity["word"], entity["entity_group"]))
|
68 |
+
start = entity["end"]
|
69 |
parsed_text.append(text[start:])
|
70 |
return parsed_text
|
71 |
|
72 |
|
73 |
if __name__ == "__main__":
|
74 |
+
run()
|
news_pipeline.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
from typing import Dict
|
2 |
-
|
3 |
-
from transformers import (
|
4 |
-
AutoModelForSequenceClassification,
|
5 |
-
AutoModelForTokenClassification,
|
6 |
-
AutoTokenizer,
|
7 |
-
TextClassificationPipeline,
|
8 |
-
TokenClassificationPipeline,
|
9 |
-
)
|
10 |
-
|
11 |
-
|
12 |
-
class NewsPipeline:
|
13 |
-
def __init__(self) -> None:
|
14 |
-
self.category_tokenizer = AutoTokenizer.from_pretrained("elozano/news-category")
|
15 |
-
self.category_pipeline = TextClassificationPipeline(
|
16 |
-
model=AutoModelForSequenceClassification.from_pretrained(
|
17 |
-
"elozano/news-category"
|
18 |
-
),
|
19 |
-
tokenizer=self.category_tokenizer,
|
20 |
-
)
|
21 |
-
self.fake_tokenizer = AutoTokenizer.from_pretrained("elozano/news-fake")
|
22 |
-
self.fake_pipeline = TextClassificationPipeline(
|
23 |
-
model=AutoModelForSequenceClassification.from_pretrained(
|
24 |
-
"elozano/news-fake"
|
25 |
-
),
|
26 |
-
tokenizer=self.fake_tokenizer,
|
27 |
-
)
|
28 |
-
self.clickbait_pipeline = TextClassificationPipeline(
|
29 |
-
model=AutoModelForSequenceClassification.from_pretrained(
|
30 |
-
"elozano/news-clickbait"
|
31 |
-
),
|
32 |
-
tokenizer=AutoTokenizer.from_pretrained("elozano/news-clickbait"),
|
33 |
-
)
|
34 |
-
self.ner_pipeline = TokenClassificationPipeline(
|
35 |
-
tokenizer=AutoTokenizer.from_pretrained("dslim/bert-base-NER"),
|
36 |
-
model=AutoModelForTokenClassification.from_pretrained(
|
37 |
-
"dslim/bert-base-NER"
|
38 |
-
),
|
39 |
-
aggregation_strategy="simple",
|
40 |
-
)
|
41 |
-
|
42 |
-
def __call__(self, headline: str, content: str) -> Dict[str, str]:
|
43 |
-
category_article_text = f" {self.category_tokenizer.sep_token} ".join(
|
44 |
-
[headline, content]
|
45 |
-
)
|
46 |
-
fake_article_text = f" {self.fake_tokenizer.sep_token} ".join(
|
47 |
-
[headline, content]
|
48 |
-
)
|
49 |
-
return {
|
50 |
-
"category": self.category_pipeline(category_article_text)[0]["label"],
|
51 |
-
"fake": self.fake_pipeline(fake_article_text)[0]["label"],
|
52 |
-
"clickbait": self.clickbait_pipeline(headline)[0]["label"],
|
53 |
-
"ner": {
|
54 |
-
"headline": list(
|
55 |
-
filter(lambda x: x["score"] > 0.8, self.ner_pipeline(headline))
|
56 |
-
),
|
57 |
-
"content": list(
|
58 |
-
filter(lambda x: x["score"] > 0.8, self.ner_pipeline(content))
|
59 |
-
),
|
60 |
-
},
|
61 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipeline.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TextClassificationPipeline
|
2 |
+
from typing import Dict, Optional
|
3 |
+
|
4 |
+
|
5 |
+
class NewsPipeline(TextClassificationPipeline):
|
6 |
+
def __init__(self, emojis: Dict[str, str], **kwargs) -> None:
|
7 |
+
self.emojis = emojis
|
8 |
+
super().__init__(**kwargs)
|
9 |
+
|
10 |
+
def __call__(self, headline: str, content: Optional[str]) -> str:
|
11 |
+
if content:
|
12 |
+
text = f" {self.tokenizer.sep_token} ".join([headline, content])
|
13 |
+
else:
|
14 |
+
text = headline
|
15 |
+
prediction = super().__call__(text)[0]
|
16 |
+
return {**prediction, "emoji": self.emojis[prediction["label"]]}
|