Spaces:
Runtime error
Runtime error
File size: 964 Bytes
792c370 b299d3d 792c370 509d552 792c370 509d552 792c370 b299d3d 509d552 792c370 b299d3d 792c370 b299d3d 792c370 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
from huggingface_hub import login, from_pretrained_keras
import os
import numpy as np
import cv2
login(os.environ["HF_TOKEN"])
modelv1 = from_pretrained_keras("elsamueldev/cats-dogs")
modelv2 = from_pretrained_keras("elsamueldev/cats-dogs-v2")
def preprocess(img: np.array) -> np.array:
img = cv2.resize(img, (100, 100)) # resize to 100x100
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # convert to grayscale
img = img.reshape(100, 100, 1) # reshape to 100x100x1
img = img / 255 # normalize
img = np.array([img]) # reshape to 1x100x100x1
return img
def predict(img: np.array, model: str):
img = preprocess(img)
if model == "v1":
dog = modelv1.predict(img)[0][0]
else:
dog = modelv2.predict(img)[0][0]
cat = 1 - dog
return {"dog": dog, "cat": cat}
gr.Interface(
fn=predict,
inputs=["image", gr.Dropdown(choices=["v1", "v2"], value="v2")],
outputs="label"
).launch() |