LEO-Demo / utils.py
huangjy-pku's picture
finalize
7e07f57
raw
history blame
6.28 kB
import datetime
import json
import os
import time
from uuid import uuid4
import gradio as gr
import torch
import yaml
from huggingface_hub import CommitScheduler, hf_hub_download
from omegaconf import OmegaConf
from model.leo_agent import LeoAgentLLM
LOG_DIR = 'logs'
MESH_DIR = 'assets/scene_meshes'
MESH_NAMES = sorted([os.path.splitext(fname)[0] for fname in os.listdir(MESH_DIR)])
ENABLE_BUTTON = gr.update(interactive=True)
DISABLE_BUTTON = gr.update(interactive=False)
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
ROLE_PROMPT = "You are an AI visual assistant situated in a 3D scene. "\
"You can perceive (1) an ego-view image (accessible when necessary) and (2) the objects (including yourself) in the scene (always accessible). "\
"You should properly respond to the USER's instruction according to the given visual information. "
EGOVIEW_PROMPT = "Ego-view image:"
OBJECTS_PROMPT = "Objects (including you) in the scene:"
OBJ_FEATS_DIR = 'assets/obj_features'
with open('cfg.yaml') as f:
cfg = yaml.safe_load(f)
cfg = OmegaConf.create(cfg)
# build model
agent = LeoAgentLLM(cfg)
# load checkpoint
if cfg.launch_mode == 'hf':
ckpt_path = hf_hub_download(cfg.hf_ckpt_path[0], cfg.hf_ckpt_path[1])
else:
ckpt_path = cfg.local_ckpt_path
ckpt = torch.load(ckpt_path, map_location='cpu')
agent.load_state_dict(ckpt, strict=False)
agent.eval()
agent.to(DEVICE)
os.makedirs(LOG_DIR, exist_ok=True)
t = datetime.datetime.now()
log_fname = os.path.join(LOG_DIR, f'{t.year}-{t.month:02d}-{t.day:02d}-{uuid4()}.json')
if cfg.launch_mode == 'hf':
access_token = os.environ['LOG_ACCESS_TOKEN']
scheduler = CommitScheduler(
repo_id=cfg.hf_log_path,
repo_type='dataset',
folder_path=LOG_DIR,
path_in_repo=LOG_DIR,
token=access_token,
)
def change_scene(dropdown_scene: str):
# reset 3D scene and chatbot history
return os.path.join(MESH_DIR, f'{dropdown_scene}.glb'), None
def receive_instruction(chatbot: gr.Chatbot, user_chat_input: gr.Textbox):
# display user input, after submitting user message, before inference
chatbot.append((user_chat_input, None))
return (chatbot, gr.update(value=""),) + (DISABLE_BUTTON,) * 5
def generate_response(
chatbot: gr.Chatbot,
dropdown_scene: gr.Dropdown,
dropdown_conversation_mode: gr.Dropdown,
repetition_penalty: float, length_penalty: float
):
# response starts
chatbot[-1] = (chatbot[-1][0], "β–Œ")
yield (chatbot,) + (DISABLE_BUTTON,) * 5
# create data_dict, batch_size = 1
data_dict = {
'prompt_before_obj': [ROLE_PROMPT],
'prompt_middle_1': [EGOVIEW_PROMPT],
'prompt_middle_2': [OBJECTS_PROMPT],
'img_tokens': torch.zeros(1, 1, 4096).float(),
'img_masks': torch.zeros(1, 1).bool(),
'anchor_locs': torch.zeros(1, 3).float(),
}
# initialize prompt
prompt = ""
if 'Multi-round' in dropdown_conversation_mode:
# multi-round dialogue, with memory
for (q, a) in chatbot[:-1]:
prompt += f"USER: {q.strip()} ASSISTANT: {a.strip()}</s>"
prompt += f"USER: {chatbot[-1][0]} ASSISTANT:"
data_dict['prompt_after_obj'] = [prompt]
# anchor orientation
anchor_orient = torch.zeros(1, 4).float()
anchor_orient[:, -1] = 1
data_dict['anchor_orientation'] = anchor_orient
# load preprocessed scene features
data_dict.update(torch.load(os.path.join(OBJ_FEATS_DIR, f'{dropdown_scene}.pth'), map_location='cpu'))
# inference
for k, v in data_dict.items():
if isinstance(v, torch.Tensor):
data_dict[k] = v.to(DEVICE)
output = agent.generate(
data_dict,
repetition_penalty=float(repetition_penalty),
length_penalty=float(length_penalty),
)
output = output[0]
# display response
for out_len in range(1, len(output)-1):
chatbot[-1] = (chatbot[-1][0], output[:out_len] + 'β–Œ')
yield (chatbot,) + (DISABLE_BUTTON,) * 5
time.sleep(0.01)
chatbot[-1] = (chatbot[-1][0], output)
vote_response(chatbot, 'log', dropdown_scene, dropdown_conversation_mode)
yield (chatbot,) + (ENABLE_BUTTON,) * 5
def vote_response(
chatbot: gr.Chatbot, vote_type: str,
dropdown_scene: gr.Dropdown,
dropdown_conversation_mode: gr.Dropdown
):
t = datetime.datetime.now()
this_log = {
'time': f'{t.hour:02d}:{t.minute:02d}:{t.second:02d}',
'type': vote_type,
'scene': dropdown_scene,
'mode': dropdown_conversation_mode,
'dialogue': [chatbot[-1]] if 'Single-round' in dropdown_conversation_mode else chatbot,
}
if cfg.launch_mode == 'hf':
with scheduler.lock: # use scheduler
if os.path.exists(log_fname):
with open(log_fname) as f:
logs = json.load(f)
logs.append(this_log)
else:
logs = [this_log]
with open(log_fname, 'w') as f:
json.dump(logs, f, indent=2)
else:
if os.path.exists(log_fname):
with open(log_fname) as f:
logs = json.load(f)
logs.append(this_log)
else:
logs = [this_log]
with open(log_fname, 'w') as f:
json.dump(logs, f, indent=2)
def upvote_response(
chatbot: gr.Chatbot,
dropdown_scene: gr.Dropdown,
dropdown_conversation_mode: gr.Dropdown
):
vote_response(chatbot, 'upvote', dropdown_scene, dropdown_conversation_mode)
return ("",) + (DISABLE_BUTTON,) * 3
def downvote_response(
chatbot: gr.Chatbot,
dropdown_scene: gr.Dropdown,
dropdown_conversation_mode: gr.Dropdown
):
vote_response(chatbot, 'downvote', dropdown_scene, dropdown_conversation_mode)
return ("",) + (DISABLE_BUTTON,) * 3
def flag_response(
chatbot: gr.Chatbot,
dropdown_scene: gr.Dropdown,
dropdown_conversation_mode: gr.Dropdown
):
vote_response(chatbot, 'flag', dropdown_scene, dropdown_conversation_mode)
return ("",) + (DISABLE_BUTTON,) * 3
def clear_history():
# reset chatbot history
return (None, "",) + (DISABLE_BUTTON,) * 4