Spaces:
Running
Running
import os | |
import re | |
import torch | |
import torchaudio | |
from einops import rearrange | |
from ema_pytorch import EMA | |
from vocos import Vocos | |
from model import CFM, UNetT, DiT, MMDiT | |
from model.utils import ( | |
get_tokenizer, | |
convert_char_to_pinyin, | |
save_spectrogram, | |
) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# --------------------- Dataset Settings -------------------- # | |
target_sample_rate = 24000 | |
n_mel_channels = 100 | |
hop_length = 256 | |
target_rms = 0.1 | |
tokenizer = "pinyin" | |
dataset_name = "Emilia_ZH_EN" | |
# ---------------------- infer setting ---------------------- # | |
seed = None # int | None | |
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base | |
ckpt_step = 1200000 | |
nfe_step = 32 # 16, 32 | |
cfg_strength = 2. | |
ode_method = 'euler' # euler | midpoint | |
sway_sampling_coef = -1. | |
speed = 1. | |
fix_duration = 27 # None (will linear estimate. if code-switched, consider fix) | float (total in seconds, include ref audio) | |
if exp_name == "F5TTS_Base": | |
model_cls = DiT | |
model_cfg = dict(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4) | |
elif exp_name == "E2TTS_Base": | |
model_cls = UNetT | |
model_cfg = dict(dim = 1024, depth = 24, heads = 16, ff_mult = 4) | |
checkpoint = torch.load(f"ckpts/{exp_name}/model_{ckpt_step}.pt", map_location=device) | |
output_dir = "tests" | |
ref_audio = "tests/ref_audio/test_en_1_ref_short.wav" | |
ref_text = "Some call me nature, others call me mother nature." | |
gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences." | |
# ref_audio = "tests/ref_audio/test_zh_1_ref_short.wav" | |
# ref_text = "对,这就是我,万人敬仰的太乙真人。" | |
# gen_text = "突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:\"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?\"" | |
# -------------------------------------------------# | |
use_ema = True | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
# Vocoder model | |
local = False | |
if local: | |
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz" | |
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml") | |
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device) | |
vocos.load_state_dict(state_dict) | |
vocos.eval() | |
else: | |
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz") | |
# Tokenizer | |
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer) | |
# Model | |
model = CFM( | |
transformer = model_cls( | |
**model_cfg, | |
text_num_embeds = vocab_size, | |
mel_dim = n_mel_channels | |
), | |
mel_spec_kwargs = dict( | |
target_sample_rate = target_sample_rate, | |
n_mel_channels = n_mel_channels, | |
hop_length = hop_length, | |
), | |
odeint_kwargs = dict( | |
method = ode_method, | |
), | |
vocab_char_map = vocab_char_map, | |
).to(device) | |
if use_ema == True: | |
ema_model = EMA(model, include_online_model = False).to(device) | |
ema_model.load_state_dict(checkpoint['ema_model_state_dict']) | |
ema_model.copy_params_from_ema_to_model() | |
else: | |
model.load_state_dict(checkpoint['model_state_dict']) | |
# Audio | |
audio, sr = torchaudio.load(ref_audio) | |
rms = torch.sqrt(torch.mean(torch.square(audio))) | |
if rms < target_rms: | |
audio = audio * target_rms / rms | |
if sr != target_sample_rate: | |
resampler = torchaudio.transforms.Resample(sr, target_sample_rate) | |
audio = resampler(audio) | |
audio = audio.to(device) | |
# Text | |
text_list = [ref_text + gen_text] | |
if tokenizer == "pinyin": | |
final_text_list = convert_char_to_pinyin(text_list) | |
else: | |
final_text_list = [text_list] | |
print(f"text : {text_list}") | |
print(f"pinyin: {final_text_list}") | |
# Duration | |
ref_audio_len = audio.shape[-1] // hop_length | |
if fix_duration is not None: | |
duration = int(fix_duration * target_sample_rate / hop_length) | |
else: # simple linear scale calcul | |
zh_pause_punc = r"。,、;:?!" | |
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text)) | |
gen_text_len = len(gen_text) + len(re.findall(zh_pause_punc, gen_text)) | |
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed) | |
# Inference | |
with torch.inference_mode(): | |
generated, trajectory = model.sample( | |
cond = audio, | |
text = final_text_list, | |
duration = duration, | |
steps = nfe_step, | |
cfg_strength = cfg_strength, | |
sway_sampling_coef = sway_sampling_coef, | |
seed = seed, | |
) | |
print(f"Generated mel: {generated.shape}") | |
# Final result | |
generated = generated[:, ref_audio_len:, :] | |
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n') | |
generated_wave = vocos.decode(generated_mel_spec.cpu()) | |
if rms < target_rms: | |
generated_wave = generated_wave * rms / target_rms | |
save_spectrogram(generated_mel_spec[0].cpu().numpy(), f"{output_dir}/test_single.png") | |
torchaudio.save(f"{output_dir}/test_single.wav", generated_wave, target_sample_rate) | |
print(f"Generated wav: {generated_wave.shape}") | |