E2-F5-TTS / scripts /count_max_epoch.py
mrfakename's picture
Super-squash branch 'main' using huggingface_hub
1646c30 verified
'''ADAPTIVE BATCH SIZE'''
print('Adaptive batch size: using grouping batch sampler, frames_per_gpu fixed fed in')
print(' -> least padding, gather wavs with accumulated frames in a batch\n')
# data
total_hours = 95282
mel_hop_length = 256
mel_sampling_rate = 24000
# target
wanted_max_updates = 1000000
# train params
gpus = 8
frames_per_gpu = 38400 # 8 * 38400 = 307200
grad_accum = 1
# intermediate
mini_batch_frames = frames_per_gpu * grad_accum * gpus
mini_batch_hours = mini_batch_frames * mel_hop_length / mel_sampling_rate / 3600
updates_per_epoch = total_hours / mini_batch_hours
steps_per_epoch = updates_per_epoch * grad_accum
# result
epochs = wanted_max_updates / updates_per_epoch
print(f"epochs should be set to: {epochs:.0f} ({epochs/grad_accum:.1f} x gd_acum {grad_accum})")
print(f"progress_bar should show approx. 0/{updates_per_epoch:.0f} updates")
print(f" or approx. 0/{steps_per_epoch:.0f} steps")
# others
print(f"total {total_hours:.0f} hours")
print(f"mini-batch of {mini_batch_frames:.0f} frames, {mini_batch_hours:.2f} hours per mini-batch")