import gradio import cv2 import numpy as np #num_inference_steps_slider_component_v1 = 121 #num_inference_steps_slider_component_v2 = 3 def inference(img, v1 = "121" , v2 = 9 ): #out = cv2.erode(img,(15,15)) #out = cv2.dilate(out,(55,55)) # https://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.remove_small_objects # my_result = cv2.remove_small_objects(binarized.astype(bool), min_size=2, connectivity=2).astype(int) #img_bw = 255*(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) > 5).astype('uint8') #se1 = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5)) #se2 = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2)) #mask = cv2.morphologyEx(img_bw, cv2.MORPH_CLOSE, se1) #mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, se2) #mask = np.dstack([mask, mask, mask]) / 255 #out = img * mask gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY ) # grayscale #out = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,133,9) #out = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,333,3) out = cv2.GaussianBlur( gray ,(5,5),0) # v1 121 , v2 1 #out = cv2.adaptiveThreshold( out ,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, int( float(v1) ) , int( float(v2) ) ) #out = cv2.adaptiveThreshold( out ,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 77 , int ( v2 ) ) out = cv2.adaptiveThreshold( out ,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 233 , 1 ) #out = blur = cv.GaussianBlur(img,(5,5),0) #out = cv2.threshold(out,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) #kernel = cv2.getStructuringElement(cv2.MORPH_RECT, kernelSize) #opening = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel) return out num_inference_steps_slider_component_v1 = gradio.Slider( label="Number of inference steps", info="The number of denoising steps. More denoising steps " "usually lead to a higher quality image at the", minimum=1, maximum=500, step=1, value=121, ) num_inference_steps_slider_component_v2 = gradio.Slider( label="Number of inference steps", info="The number of denoising steps. More denoising steps " "usually lead to a higher quality image at the", minimum=1, maximum=100, step=1, value=3, ) # For information on Interfaces, head to https://gradio.app/docs/ # For user guides, head to https://gradio.app/guides/ # For Spaces usage, head to https://huggingface.co/docs/hub/spaces iface = gradio.Interface( fn=inference, inputs=['image',num_inference_steps_slider_component_v1,num_inference_steps_slider_component_v2], outputs='image', title='Noise Removal', description='Remove Noise with OpenCV and Adaptial Gaussian!', examples=[["detail_with_lines_and_noise.jpg", "lama.webp", "dT4KW.png"]] ) #examples=["detail_with_lines_and_noise.jpg", "lama.webp", "dT4KW.png"]) #examples=["detail_with_lines_and_noise.jpg", "lama.webp", "test_lines.jpg","llama.jpg", "dT4KW.png"]) iface.launch()