emilylearning
commited on
Commit
•
1c81243
1
Parent(s):
01dc8f8
works on vs code...
Browse files
app.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
from matplotlib.ticker import MaxNLocator
|
4 |
+
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
MODEL_NAMES = ["bert-base-uncased",
|
9 |
+
"distilbert-base-uncased", "xlm-roberta-base"]
|
10 |
+
|
11 |
+
DECIMAL_PLACES = 1
|
12 |
+
EPS = 1e-5 # to avoid /0 errors
|
13 |
+
|
14 |
+
# Example date conts
|
15 |
+
DATE_SPLIT_KEY = "DATE"
|
16 |
+
START_YEAR = 1800
|
17 |
+
STOP_YEAR = 1999
|
18 |
+
NUM_PTS = 20
|
19 |
+
DATES = np.linspace(START_YEAR, STOP_YEAR, NUM_PTS).astype(int).tolist()
|
20 |
+
DATES = [f'{d}' for d in DATES]
|
21 |
+
|
22 |
+
# Example place conts
|
23 |
+
# https://www3.weforum.org/docs/WEF_GGGR_2021.pdf
|
24 |
+
# Bottom 10 and top 10 Global Gender Gap ranked countries.
|
25 |
+
PLACE_SPLIT_KEY = "PLACE"
|
26 |
+
PLACES = [
|
27 |
+
"Afghanistan",
|
28 |
+
"Yemen",
|
29 |
+
"Iraq",
|
30 |
+
"Pakistan",
|
31 |
+
"Syria",
|
32 |
+
"Democratic Republic of Congo",
|
33 |
+
"Iran",
|
34 |
+
"Mali",
|
35 |
+
"Chad",
|
36 |
+
"Saudi Arabia",
|
37 |
+
"Switzerland",
|
38 |
+
"Ireland",
|
39 |
+
"Lithuania",
|
40 |
+
"Rwanda",
|
41 |
+
"Namibia",
|
42 |
+
"Sweden",
|
43 |
+
"New Zealand",
|
44 |
+
"Norway",
|
45 |
+
"Finland",
|
46 |
+
"Iceland"]
|
47 |
+
|
48 |
+
|
49 |
+
# Example Reddit interest consts
|
50 |
+
# in order of increasing self-identified female participation.
|
51 |
+
# See http://bburky.com/subredditgenderratios/ , Minimum subreddit size: 400000
|
52 |
+
SUBREDDITS = [
|
53 |
+
"GlobalOffensive",
|
54 |
+
"pcmasterrace",
|
55 |
+
"nfl",
|
56 |
+
"sports",
|
57 |
+
"The_Donald",
|
58 |
+
"leagueoflegends",
|
59 |
+
"Overwatch",
|
60 |
+
"gonewild",
|
61 |
+
"Futurology",
|
62 |
+
"space",
|
63 |
+
"technology",
|
64 |
+
"gaming",
|
65 |
+
"Jokes",
|
66 |
+
"dataisbeautiful",
|
67 |
+
"woahdude",
|
68 |
+
"askscience",
|
69 |
+
"wow",
|
70 |
+
"anime",
|
71 |
+
"BlackPeopleTwitter",
|
72 |
+
"politics",
|
73 |
+
"pokemon",
|
74 |
+
"worldnews",
|
75 |
+
"reddit.com",
|
76 |
+
"interestingasfuck",
|
77 |
+
"videos",
|
78 |
+
"nottheonion",
|
79 |
+
"television",
|
80 |
+
"science",
|
81 |
+
"atheism",
|
82 |
+
"movies",
|
83 |
+
"gifs",
|
84 |
+
"Music",
|
85 |
+
"trees",
|
86 |
+
"EarthPorn",
|
87 |
+
"GetMotivated",
|
88 |
+
"pokemongo",
|
89 |
+
"news",
|
90 |
+
# removing below subreddit as most of the tokens are taken up by it:
|
91 |
+
# ['ff', '##ff', '##ff', '##fu', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', '##u', ...]
|
92 |
+
# "fffffffuuuuuuuuuuuu",
|
93 |
+
"Fitness",
|
94 |
+
"Showerthoughts",
|
95 |
+
"OldSchoolCool",
|
96 |
+
"explainlikeimfive",
|
97 |
+
"todayilearned",
|
98 |
+
"gameofthrones",
|
99 |
+
"AdviceAnimals",
|
100 |
+
"DIY",
|
101 |
+
"WTF",
|
102 |
+
"IAmA",
|
103 |
+
"cringepics",
|
104 |
+
"tifu",
|
105 |
+
"mildlyinteresting",
|
106 |
+
"funny",
|
107 |
+
"pics",
|
108 |
+
"LifeProTips",
|
109 |
+
"creepy",
|
110 |
+
"personalfinance",
|
111 |
+
"food",
|
112 |
+
"AskReddit",
|
113 |
+
"books",
|
114 |
+
"aww",
|
115 |
+
"sex",
|
116 |
+
"relationships",
|
117 |
+
]
|
118 |
+
|
119 |
+
GENDERED_LIST = [
|
120 |
+
['he', 'she'],
|
121 |
+
['him', 'her'],
|
122 |
+
['his', 'hers'],
|
123 |
+
["himself", "herself"],
|
124 |
+
['male', 'female'],
|
125 |
+
['man', 'woman'],
|
126 |
+
['men', 'women'],
|
127 |
+
["husband", "wife"],
|
128 |
+
['father', 'mother'],
|
129 |
+
['boyfriend', 'girlfriend'],
|
130 |
+
['brother', 'sister'],
|
131 |
+
["actor", "actress"],
|
132 |
+
]
|
133 |
+
|
134 |
+
|
135 |
+
# Fire up the models
|
136 |
+
# TODO: Make it so models can be added in the future
|
137 |
+
models_paths = dict()
|
138 |
+
models = dict()
|
139 |
+
|
140 |
+
|
141 |
+
# %%
|
142 |
+
for bert_like in MODEL_NAMES:
|
143 |
+
models_paths[bert_like] = bert_like
|
144 |
+
models[bert_like] = pipeline(
|
145 |
+
"fill-mask", model=models_paths[bert_like])
|
146 |
+
|
147 |
+
|
148 |
+
def get_gendered_token_ids():
|
149 |
+
male_gendered_tokens = [list[0] for list in GENDERED_LIST]
|
150 |
+
female_gendered_tokens = [list[1] for list in GENDERED_LIST]
|
151 |
+
|
152 |
+
return male_gendered_tokens, female_gendered_tokens
|
153 |
+
|
154 |
+
|
155 |
+
def prepare_text_for_masking(input_text, mask_token, gendered_tokens, split_key):
|
156 |
+
text_w_masks_list = [
|
157 |
+
mask_token if word in gendered_tokens else word for word in input_text.split()]
|
158 |
+
num_masks = len([m for m in text_w_masks_list if m == mask_token])
|
159 |
+
|
160 |
+
text_portions = ' '.join(text_w_masks_list).split(split_key)
|
161 |
+
return text_portions, num_masks
|
162 |
+
|
163 |
+
|
164 |
+
def get_avg_prob_from_pipeline_outputs(mask_filled_text, gendered_token, num_preds):
|
165 |
+
pronoun_preds = [sum([
|
166 |
+
pronoun["score"] if pronoun["token_str"].lower(
|
167 |
+
) in gendered_token else 0.0
|
168 |
+
for pronoun in top_preds])
|
169 |
+
for top_preds in mask_filled_text
|
170 |
+
]
|
171 |
+
return round(sum(pronoun_preds) / (EPS + num_preds) * 100, DECIMAL_PLACES)
|
172 |
+
|
173 |
+
|
174 |
+
def get_figure(df, gender, n_fit=1):
|
175 |
+
df = df.set_index('x-axis')
|
176 |
+
cols = df.columns
|
177 |
+
xs = list(range(len(df)))
|
178 |
+
ys = df[cols[0]]
|
179 |
+
fig, ax = plt.subplots()
|
180 |
+
|
181 |
+
# find stackoverflow reference
|
182 |
+
p, C_p = np.polyfit(xs, ys, n_fit, cov=1)
|
183 |
+
t = np.linspace(min(xs)-1, max(xs)+1, 10*len(xs))
|
184 |
+
TT = np.vstack([t**(n_fit-i) for i in range(n_fit+1)]).T
|
185 |
+
|
186 |
+
# matrix multiplication calculates the polynomial values
|
187 |
+
yi = np.dot(TT, p)
|
188 |
+
C_yi = np.dot(TT, np.dot(C_p, TT.T)) # C_y = TT*C_z*TT.T
|
189 |
+
sig_yi = np.sqrt(np.diag(C_yi)) # Standard deviations are sqrt of diagonal
|
190 |
+
|
191 |
+
ax.fill_between(t, yi+sig_yi, yi-sig_yi, alpha=.25)
|
192 |
+
ax.plot(t, yi, '-')
|
193 |
+
ax.plot(df, 'ro')
|
194 |
+
ax.legend(list(df.columns))
|
195 |
+
|
196 |
+
ax.axis('tight')
|
197 |
+
|
198 |
+
# fig.canvas.draw()
|
199 |
+
|
200 |
+
ax.set_xlabel("Value injected into input text")
|
201 |
+
ax.set_title(
|
202 |
+
f"Probability of predicting {gender} pronouns.")
|
203 |
+
ax.set_ylabel(f"Softmax prob for pronouns")
|
204 |
+
ax.xaxis.set_major_locator(MaxNLocator(6))
|
205 |
+
ax.tick_params(axis='x', labelrotation=15)
|
206 |
+
return fig
|
207 |
+
|
208 |
+
|
209 |
+
# %%
|
210 |
+
def predict_gender_pronouns(
|
211 |
+
model_type,
|
212 |
+
indie_vars,
|
213 |
+
split_key,
|
214 |
+
normalizing,
|
215 |
+
n_fit,
|
216 |
+
input_text,
|
217 |
+
):
|
218 |
+
"""Run inference on input_text for each model type, returning df and plots of precentage
|
219 |
+
of gender pronouns predicted as female and male in each target text.
|
220 |
+
"""
|
221 |
+
model = models[model_type]
|
222 |
+
mask_token = model.tokenizer.mask_token
|
223 |
+
|
224 |
+
indie_vars_list = indie_vars.split(',')
|
225 |
+
|
226 |
+
male_gendered_tokens, female_gendered_tokens = get_gendered_token_ids()
|
227 |
+
|
228 |
+
text_segments, num_preds = prepare_text_for_masking(
|
229 |
+
input_text, mask_token, male_gendered_tokens + female_gendered_tokens, split_key)
|
230 |
+
|
231 |
+
male_pronoun_preds = []
|
232 |
+
female_pronoun_preds = []
|
233 |
+
for indie_var in indie_vars_list:
|
234 |
+
|
235 |
+
target_text = f"{indie_var}".join(text_segments)
|
236 |
+
mask_filled_text = model(target_text)
|
237 |
+
# Quick hack as realized return type based on how many MASKs in text.
|
238 |
+
if type(mask_filled_text[0]) is not list:
|
239 |
+
mask_filled_text = [mask_filled_text]
|
240 |
+
|
241 |
+
female_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
|
242 |
+
mask_filled_text,
|
243 |
+
female_gendered_tokens,
|
244 |
+
num_preds
|
245 |
+
))
|
246 |
+
male_pronoun_preds.append(get_avg_prob_from_pipeline_outputs(
|
247 |
+
mask_filled_text,
|
248 |
+
male_gendered_tokens,
|
249 |
+
num_preds
|
250 |
+
))
|
251 |
+
|
252 |
+
if normalizing:
|
253 |
+
total_gendered_probs = np.add(
|
254 |
+
female_pronoun_preds, male_pronoun_preds)
|
255 |
+
female_pronoun_preds = np.around(
|
256 |
+
np.divide(female_pronoun_preds, total_gendered_probs+EPS)*100,
|
257 |
+
decimals=DECIMAL_PLACES
|
258 |
+
)
|
259 |
+
male_pronoun_preds = np.around(
|
260 |
+
np.divide(male_pronoun_preds, total_gendered_probs+EPS)*100,
|
261 |
+
decimals=DECIMAL_PLACES
|
262 |
+
)
|
263 |
+
|
264 |
+
results_df = pd.DataFrame({'x-axis': indie_vars_list})
|
265 |
+
results_df['female_pronouns'] = female_pronoun_preds
|
266 |
+
results_df['male_pronouns'] = male_pronoun_preds
|
267 |
+
female_fig = get_figure(results_df.drop(
|
268 |
+
'male_pronouns', axis=1), 'female', n_fit)
|
269 |
+
male_fig = get_figure(results_df.drop(
|
270 |
+
'female_pronouns', axis=1), 'male', n_fit)
|
271 |
+
|
272 |
+
return (
|
273 |
+
target_text,
|
274 |
+
female_fig,
|
275 |
+
male_fig,
|
276 |
+
results_df,
|
277 |
+
)
|
278 |
+
|
279 |
+
# %%
|
280 |
+
title = "Causing Gender Pronouns"
|
281 |
+
description = """
|
282 |
+
## Intro
|
283 |
+
|
284 |
+
"""
|
285 |
+
|
286 |
+
place_example = [
|
287 |
+
MODEL_NAMES[0],
|
288 |
+
','.join(PLACES),
|
289 |
+
'PLACE',
|
290 |
+
"False",
|
291 |
+
1,
|
292 |
+
'Born in PLACE, she was a teacher.'
|
293 |
+
]
|
294 |
+
|
295 |
+
date_example = [
|
296 |
+
MODEL_NAMES[0],
|
297 |
+
','.join(DATES),
|
298 |
+
'DATE',
|
299 |
+
"False",
|
300 |
+
2,
|
301 |
+
'Born in DATE, she was a doctor.'
|
302 |
+
]
|
303 |
+
|
304 |
+
|
305 |
+
subreddit_example = [
|
306 |
+
MODEL_NAMES[2],
|
307 |
+
','.join(SUBREDDITS),
|
308 |
+
'SUBREDDIT',
|
309 |
+
"False",
|
310 |
+
1,
|
311 |
+
'I saw on r/SUBREDDIT that she is a hacker.'
|
312 |
+
]
|
313 |
+
|
314 |
+
|
315 |
+
def date_fn():
|
316 |
+
return date_example
|
317 |
+
def place_fn():
|
318 |
+
return place_example
|
319 |
+
def reddit_fn():
|
320 |
+
return subreddit_example
|
321 |
+
|
322 |
+
|
323 |
+
# %%
|
324 |
+
demo = gr.Blocks()
|
325 |
+
with demo:
|
326 |
+
gr.Markdown("## Hunt for spurious correlations in our LLMs.")
|
327 |
+
gr.Markdown("Please see a better explanation in another [Space](https://huggingface.co/spaces/emilylearning/causing_gender_pronouns_two).")
|
328 |
+
|
329 |
+
|
330 |
+
with gr.Row():
|
331 |
+
x_axis = gr.Textbox(
|
332 |
+
lines=5,
|
333 |
+
label="Pick a spectrum of values for text injection and x-axis",
|
334 |
+
)
|
335 |
+
with gr.Row():
|
336 |
+
model_name = gr.Radio(
|
337 |
+
MODEL_NAMES,
|
338 |
+
type="value",
|
339 |
+
label="Pick a BERT-like model.",
|
340 |
+
)
|
341 |
+
place_holder = gr.Textbox(
|
342 |
+
label="Special token used in input text that will be replaced with the above spectrum of values.",
|
343 |
+
type="index",
|
344 |
+
)
|
345 |
+
to_normalize = gr.Dropdown(
|
346 |
+
["False", "True"],
|
347 |
+
label="Normalize?",
|
348 |
+
type="index",
|
349 |
+
)
|
350 |
+
n_fit = gr.Dropdown(
|
351 |
+
list(range(1, 5)),
|
352 |
+
label="Degree of polynomial fit for dose response trend",
|
353 |
+
type="value",
|
354 |
+
)
|
355 |
+
with gr.Row():
|
356 |
+
input_text = gr.Textbox(
|
357 |
+
lines=5,
|
358 |
+
label="Input Text: Sentence about a single person using some gendered pronouns to refer to them.",
|
359 |
+
)
|
360 |
+
with gr.Row():
|
361 |
+
sample_text = gr.Textbox(
|
362 |
+
type="auto", label="Output text: Sample of text fed to model")
|
363 |
+
with gr.Row():
|
364 |
+
female_fig = gr.Plot(
|
365 |
+
type="auto", label="Plot of softmax probability pronouns predicted female.")
|
366 |
+
with gr.Row():
|
367 |
+
male_fig = gr.Plot(
|
368 |
+
type="auto", label="Plot of softmax probability pronouns predicted male.")
|
369 |
+
with gr.Row():
|
370 |
+
df = gr.Dataframe(
|
371 |
+
show_label=True,
|
372 |
+
overflow_row_behaviour="show_ends",
|
373 |
+
label="Table of softmax probability for pronouns predictions",
|
374 |
+
)
|
375 |
+
gr.Markdown("x-axis sorted by older to more recent dates:")
|
376 |
+
place_gen = gr.Button('Populate fields with a location example')
|
377 |
+
|
378 |
+
gr.Markdown("x-axis sorted by bottom 10 and top 10 Global Gender Gap ranked countries:")
|
379 |
+
date_gen = gr.Button('Populate fields with a date example')
|
380 |
+
|
381 |
+
gr.Markdown("x-axis sorted in order of increasing self-identified female participation (see [bburky demo](http://bburky.com/subredditgenderratios/)): ")
|
382 |
+
subreddit_gen = gr.Button('Populate fields with a subreddit example')
|
383 |
+
|
384 |
+
#https://github.com/gradio-app/gradio/issues/690#issuecomment-1118772919
|
385 |
+
with gr.Row():
|
386 |
+
date_gen.click(date_fn, inputs=[], outputs=[model_name,
|
387 |
+
x_axis, place_holder, to_normalize, n_fit, input_text])
|
388 |
+
place_gen.click(place_fn, inputs=[], outputs=[
|
389 |
+
model_name, x_axis, place_holder, to_normalize, n_fit, input_text])
|
390 |
+
subreddit_gen.click(reddit_fn, inputs=[], outputs=[
|
391 |
+
model_name, x_axis, place_holder, to_normalize, n_fit, input_text])
|
392 |
+
with gr.Row():
|
393 |
+
btn = gr.Button("Hit submit")
|
394 |
+
btn.click(
|
395 |
+
predict_gender_pronouns,
|
396 |
+
inputs=[model_name, x_axis, place_holder,
|
397 |
+
to_normalize, n_fit, input_text],
|
398 |
+
outputs=[sample_text, female_fig, male_fig, df])
|
399 |
+
|
400 |
+
demo.launch(debug=True)
|