Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,526 Bytes
68f6e22 15b02cd 68f6e22 3f0e127 68f6e22 c9970db 68f6e22 c9970db 68f6e22 c9970db 68f6e22 3f0e127 ef101b1 68f6e22 ef101b1 3f0e127 15b02cd 68f6e22 ef101b1 68f6e22 ef101b1 68f6e22 6f30bf0 68f6e22 208a670 ef101b1 68f6e22 ef101b1 6f30bf0 cc62b3b 6f30bf0 68f6e22 15b02cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import gradio as gr
import spaces
import os
import cv2
import torch
from PIL import Image
from insightface.app import FaceAnalysis
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID
from transformers import CLIPFeatureExtractor
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler, AutoencoderKL
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
import dlib
import imutils
from imutils import face_utils
import numpy as np
from skimage import transform as tf
import random
base_model_path = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
base_cache = "model-cache"
vae_model_path = "stabilityai/sd-vae-ft-mse"
ip_cache = "./ip-cache"
device = "cuda"
# Setup function to load models and other dependencies
def setup():
"""Load the model into memory to make running multiple predictions efficient"""
# Get ip-adapter-faceid model
if not os.path.exists("ip-cache/ip-adapter-faceid_sd15.bin"):
os.makedirs(ip_cache, exist_ok=True)
os.system(f"wget -O ip-cache/ip-adapter-faceid_sd15.bin https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid_sd15.bin")
# Download shape_predictor_68_face_landmarks.dat if it doesn't exist
if not os.path.exists("faceid/shape_predictor_68_face_landmarks.dat"):
os.makedirs("faceid", exist_ok=True)
os.system("wget -O faceid/shape_predictor_68_face_landmarks.dat https://github.com/italojs/facial-landmarks-recognition/raw/master/shape_predictor_68_face_landmarks.dat")
# Face embedding
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
# SD
noise_scheduler = EulerDiscreteScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012
)
vae = AutoencoderKL.from_pretrained(
vae_model_path
).to(dtype=torch.float16)
pipe = StableDiffusionPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
safety_checker=StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker"),
cache_dir=base_cache,
)
pipe = pipe.to(device)
# IP adapter
ip_model = IPAdapterFaceID(
pipe,
"ip-cache/ip-adapter-faceid_sd15.bin",
device
)
return app, ip_model
app, ip_model = setup()
def get_face_landmarks(image_path):
def add_padding(image, padding_size=50):
height, width = image.shape[:2]
padded_image = cv2.copyMakeBorder(
image,
top=padding_size,
bottom=padding_size,
left=padding_size,
right=padding_size,
borderType=cv2.BORDER_CONSTANT,
value=[255, 255, 255] # White padding
)
return padded_image
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('faceid/shape_predictor_68_face_landmarks.dat')
image = cv2.imread(image_path)
image = imutils.resize(image, width=512)
# Add padding to the image
image = add_padding(image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 1)
for (i, rect) in enumerate(rects):
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
return shape, image
def morph_faces(image1_path, image2_path, alpha=0.5):
landmarks1, image1 = get_face_landmarks(image1_path)
landmarks2, image2 = get_face_landmarks(image2_path)
average_landmarks = (landmarks1 + landmarks2) / 2
tform1 = tf.estimate_transform('similarity', landmarks1, average_landmarks)
tform2 = tf.estimate_transform('similarity', landmarks2, average_landmarks)
morphed_image1 = tf.warp(image1, inverse_map=tform1.inverse, output_shape=(512, 512))
morphed_image2 = tf.warp(image2, inverse_map=tform2.inverse, output_shape=(512, 512))
morphed_image = (1 - alpha) * morphed_image1 + alpha * morphed_image2
morphed_image = (morphed_image * 255).astype(np.uint8) # Convert to [0, 255] range
output_path = "tmp.png"
cv2.imwrite(output_path, morphed_image)
return output_path
def get_negative_prompt(gender):
if gender == "Boy":
return "(mascara, makeup: 1.4), (breasts, boobs, naked, nude: 1.4), (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
elif gender == "Girl":
return "(beard, mustache, male features: 1.4), (naked, nude: 1.4), (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
else: # Random
return "(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation"
def construct_prompt(base_prompt, additional_prompt, gender):
full_prompt = base_prompt
if gender == "Boy":
full_prompt += ", male child, boy"
elif gender == "Girl":
full_prompt += ", female child, girl"
if additional_prompt:
full_prompt += ", " + additional_prompt
return full_prompt
@spaces.GPU(duration = 40)
def generate_image(face_image_1, face_image_2, additional_prompt, gender):
base_prompt = "portrait of a 6 y.o. child, 8k, HD, happy, perfect eyes, cute"
full_prompt = construct_prompt(base_prompt, additional_prompt, gender)
negative_prompt = get_negative_prompt(gender)
baby_image_path = morph_faces(face_image_1, face_image_2)
def generate_images(faceid_embeds, num_outputs=1):
images = ip_model.generate(
prompt=full_prompt,
negative_prompt=negative_prompt,
faceid_embeds=faceid_embeds,
num_samples=num_outputs,
width=768,
height=768,
num_inference_steps=40,
seed=None
)
return images
faceid_embeds = app.get(cv2.imread(baby_image_path))[0].normed_embedding
faceid_embeds = torch.from_numpy(faceid_embeds).unsqueeze(0)
generated_images = generate_images(faceid_embeds)
return generated_images[0]
# Gradio Interface with Examples
gr_interface = gr.Interface(
fn=generate_image,
inputs=[
gr.Image(type="filepath", label="First Face Image"),
gr.Image(type="filepath", label="Second Face Image"),
gr.Textbox(label="Prompt"),
gr.Dropdown(choices=["Boy", "Girl", "Random"], value="Boy", label="Gender")
],
outputs=gr.Image(label="Generated Image"),
title="Face Morphing and Image Generation with Stable Diffusion",
examples=[
["yann-lecun.jpg", "isabelle-guyon.jpg", "playing chess", "Boy"]
]
)
gr_interface.launch(share=True)
|