Spaces:
Runtime error
Runtime error
File size: 20,105 Bytes
73baeae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
#!/usr/bin/env python
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import math
import os
import sys
import datasets
import numpy as np
import torch
import transformers
from aac_metrics import evaluate
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from datasets import load_dataset
from omegaconf import OmegaConf
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from transformers import (
AutoTokenizer,
BartConfig,
get_inverse_sqrt_schedule,
get_scheduler,
)
from data.collator import DataCollatorForEnClapBart
from data.preprocess import Preprocessor
from modeling.enclap_bart import EnClapBartForConditionalGeneration
logger = get_logger(__name__)
metric_list = ["meteor", "spider"]
def main():
# Load Configuration
cfg_path = sys.argv[1]
args = OmegaConf.load(cfg_path)
# Initialize Logging
accelerator_log_kwargs = {}
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
if args.with_tracking:
accelerator_log_kwargs["log_with"] = args.report_to
accelerator_log_kwargs["project_dir"] = args.output_dir
# Initialize Accelerator
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
split_batches=args.split_batches,
kwargs_handlers=[ddp_kwargs],
**accelerator_log_kwargs,
)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
with open(os.path.join(args.output_dir, "args.yaml"), "w") as f:
OmegaConf.save(args, f)
accelerator.wait_for_everyone()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
file_handler = logging.FileHandler(os.path.join(args.output_dir, "train_log.txt"))
logger.logger.addHandler(file_handler)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets
data_files = {}
data_files_eval = {}
if args.train_file is not None:
data_files["train"] = args.train_file
if args.validation_file is not None:
data_files_eval["validation"] = args.validation_file
extension = args.train_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
raw_datasets_eval = load_dataset(extension, data_files=data_files_eval)
# Load pretrained model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name)
if args.config_name_or_path is not None:
config = BartConfig.from_pretrained(args.config_name_or_path)
else:
config = None
if args.model_name_or_path is not None:
if config is None:
model = EnClapBartForConditionalGeneration.from_pretrained(
args.model_name_or_path
)
else:
model = EnClapBartForConditionalGeneration.from_pretrained(
args.model_name_or_path, config=config
)
else:
model = EnClapBartForConditionalGeneration(config=config)
# Set the generation config
if args.val_max_target_length is None:
args.val_max_target_length = args.max_target_length
# Set max encodec length based on the shape of the positional encoding
max_encodec_length = model.config.max_position_embeddings - 2
label_pad_token_id = (
-100 if args.ignore_pad_token_for_loss else tokenizer.pad_token_id
)
preprocessor = Preprocessor(
args.encodec_base_path,
args.clap_base_path,
tokenizer,
model.config.max_position_embeddings,
args.encodec_masking_prob,
args.encodec_masking_span,
label_pad_token_id,
model.config.encodec_vocab_size,
args.eval_num_captions,
)
with accelerator.main_process_first():
train_dataset = raw_datasets["train"].map(
preprocessor.preprocess_train,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on dataset",
)
train_dataset.set_format(
"pt",
columns=[
"input_ids",
"attention_mask",
"clap",
"labels",
"decoder_attention_mask",
],
)
# Temporarily set max_target_length for validation.
eval_dataset = raw_datasets_eval["validation"].map(
preprocessor.preprocess_eval,
num_proc=args.preprocessing_num_workers,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on dataset",
)
eval_dataset.set_format(
"pt",
columns=["input_ids", "attention_mask", "clap"],
output_all_columns=True,
)
train_data_collator = DataCollatorForEnClapBart(
tokenizer=tokenizer,
model=model,
return_tensors="pt",
label_pad_token_id=label_pad_token_id,
max_length=max_encodec_length,
encodec_masking_prob=args.encodec_masking_prob,
encodec_masking_span=args.encodec_masking_span,
)
valid_data_collator = DataCollatorForEnClapBart(
tokenizer=tokenizer,
model=model,
return_tensors="pt",
label_pad_token_id=label_pad_token_id,
max_length=max_encodec_length,
)
train_dataloader = DataLoader(
train_dataset,
shuffle=True,
collate_fn=train_data_collator,
batch_size=args.per_device_train_batch_size,
)
eval_dataloader = DataLoader(
eval_dataset,
collate_fn=valid_data_collator,
batch_size=args.per_device_eval_batch_size,
)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight"]
optimizer_grouped_parameters = [
{
"params": [
p
for n, p in model.named_parameters()
if not any(nd in n for nd in no_decay)
],
"weight_decay": args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps
)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
if args.lr_scheduler_type == "inverse_sqrt" and hasattr(args, "time_scale"):
lr_scheduler = get_inverse_sqrt_schedule(
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
timescale=args.time_scale,
)
else:
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Prepare everything with our `accelerator`.
(
model,
optimizer,
train_dataloader,
eval_dataloader,
lr_scheduler,
) = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps
)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# The trackers initializes automatically on the main process.
if args.with_tracking:
accelerator.init_trackers(args.logging_dir)
# Train!
total_batch_size = (
args.per_device_train_batch_size
* accelerator.num_processes
* args.gradient_accumulation_steps
)
if args.split_batches:
total_batch_size = int(total_batch_size / accelerator.num_processes)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(
f" Instantaneous batch size per device = {args.per_device_train_batch_size}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if not args.overwrite_output_dir and os.path.exists(
os.path.join(args.output_dir, "checkpoints")
):
if args.resume_from_checkpoint is not None:
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
accelerator.load_state(args.resume_from_checkpoint)
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [
f
for f in os.scandir(os.path.join(args.output_dir, "checkpoints"))
if f.is_dir()
]
dirs.sort(key=os.path.getctime)
path = dirs[
-1
].name # Sorts folders by date modified, most recent checkpoint is the last
accelerator.print(f"Resumed from checkpoint: {dirs[-1]}")
accelerator.load_state(dirs[-1])
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = (
int(training_difference.replace("step_", ""))
* args.gradient_accumulation_steps
)
starting_epoch = resume_step // len(train_dataloader)
resume_step -= starting_epoch * len(train_dataloader)
completed_steps = resume_step // args.gradient_accumulation_stepp
# update the progress_bar if load from checkpoint
if args.with_tracking:
total_loss = 0
logging_loss = 0
before_epoch_loss = 0
if args.encodec_masking_prob > 0:
total_encodec_loss = 0
logging_encodec_loss = 0
before_epoch_encodec_loss = 0
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
if (
args.resume_from_checkpoint
and epoch == starting_epoch
and resume_step is not None
):
# We skip the first `n` batches in the dataloader when resuming from a checkpoint
active_dataloader = accelerator.skip_first_batches(
train_dataloader, resume_step
)
else:
active_dataloader = train_dataloader
logger.info(f"***** Running epoch {epoch} *****")
epoch_iterator = tqdm(
active_dataloader,
desc="Training",
disable=not accelerator.is_local_main_process,
dynamic_ncols=True,
colour="CYAN",
)
for step, batch in enumerate(epoch_iterator):
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += outputs.lm_loss.item()
if args.encodec_masking_prob > 0:
if outputs.encodec_loss is not None:
total_encodec_loss += outputs.encodec_loss.item()
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(
model.parameters(), max_norm=args.max_grad_norm
)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
completed_steps += 1
# Add loss information to tqdm
epoch_iterator.set_postfix(loss=total_loss / completed_steps)
if completed_steps % args.logging_steps == 0:
train_log = {
"train/learning_rate": lr_scheduler.get_last_lr()[0]
}
train_log["train/loss"] = (
total_loss - logging_loss
) / args.logging_steps
logging_loss = total_loss
if args.encodec_masking_prob > 0:
train_log["train/encodec_loss"] = (
total_encodec_loss - logging_encodec_loss
) / args.logging_steps
logging_encodec_loss = total_encodec_loss
accelerator.log(train_log, step=completed_steps)
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps }"
if args.output_dir is not None:
output_dir = os.path.join(
args.output_dir, "checkpoints", output_dir
)
accelerator.save_state(output_dir)
if completed_steps >= args.max_train_steps:
break
model.eval()
gen_kwargs = {
"max_length": args.val_max_target_length,
}
predictions = []
references = []
eval_iterator = tqdm(
eval_dataloader,
desc="Validation",
disable=not accelerator.is_local_main_process,
dynamic_ncols=True,
colour="MAGENTA",
)
for step, batch in enumerate(eval_iterator):
# Drop the padded samples of the last batch of dataloader
# try:
# if accelerator.gradient_state.end_of_dataloader and accelerator.gradient_state.remainder > 0:
# batch = batch[:accelerator.gradient_state.remainder]
# except:
# pass
with torch.no_grad():
batch["input_ids"] = batch["input_ids"].cuda()
batch["clap"] = batch["clap"].cuda()
batch["attention_mask"] = batch["attention_mask"].cuda()
batch["eos_mask"] = batch["eos_mask"].cuda()
generated_tokens = accelerator.unwrap_model(model).generate(
batch["input_ids"],
clap=batch["clap"],
attention_mask=batch["attention_mask"],
eos_mask=batch["eos_mask"],
**gen_kwargs,
)
generated_tokens = accelerator.pad_across_processes(
generated_tokens, dim=1, pad_index=tokenizer.pad_token_id
)
generated_tokens = generated_tokens.cpu().numpy()
captions = batch["captions"]
if isinstance(generated_tokens, tuple):
generated_tokens = generated_tokens[0]
decoded_preds = tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)
predictions.extend(decoded_preds)
references.extend(captions)
logger.info("Evaluating predictions...")
result = evaluate(predictions, references, metrics=metric_list)
# Gather Result
result = {k: v.cuda() for k, v in result[0].items()}
result = accelerator.gather_for_metrics(result)
# Log the average of metrics among the processes
if accelerator.num_processes > 1:
result = {f"eval/{k}": round(v.mean().item(), 4) for k, v in result.items()}
else:
result = {f"eval/{k}": round(v.item(), 4) for k, v in result.items()}
logger.info(result)
if args.with_tracking:
result["train/epoch_train_loss"] = (total_loss - before_epoch_loss) / len(
train_dataloader
)
result["train/steps"] = completed_steps
before_epoch_loss = total_loss
if args.encodec_masking_prob > 0:
result["train/epoch_encodec_loss"] = (
total_encodec_loss - before_epoch_encodec_loss
) / len(train_dataloader)
before_epoch_encodec_loss = total_encodec_loss
accelerator.log(result, step=epoch)
if args.checkpointing_steps == "epoch":
output_dir = f"epoch_{epoch}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, "checkpoints", output_dir)
accelerator.save_state(output_dir)
if accelerator.is_main_process:
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.config.save_pretrained(output_dir)
if args.output_dir is not None:
save_dir = os.path.join(args.output_dir, "final")
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
save_dir,
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
)
if accelerator.is_main_process:
tokenizer.save_pretrained(save_dir)
if __name__ == "__main__":
main()
|