enclap / modeling /enclap_bart.py
tonyswoo's picture
Initial Commit
73baeae
import math
import random
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import (
BaseModelOutput,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
)
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bart.modeling_bart import (
BartDecoder,
BartEncoderLayer,
BartForConditionalGeneration,
BartLearnedPositionalEmbedding,
BartModel,
BartPretrainedModel,
_expand_mask,
shift_tokens_right,
)
from transformers.utils import logging
from .modeling_outputs import EnClapBartOutput
logger = logging.get_logger(__name__)
class EnClapBartConfig(BartConfig):
def __init__(
self,
d_clap: int = 512,
num_rvq: int = 16,
encodec_vocab_size: int = 1024,
encodec_pad_token_id: int = 1024,
mcm_loss_scale: float = 0.7,
label_smoothing: float = 0.2,
**kwargs,
):
super().__init__(**kwargs)
self.d_clap = d_clap
self.num_rvq = num_rvq
self.encodec_vocab_size = encodec_vocab_size
self.encodec_pad_token_id = encodec_pad_token_id
self.mcm_loss_scale = mcm_loss_scale
self.label_smoothing = label_smoothing
class EnClapBartEncoder(BartPretrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`BartEncoderLayer`].
Args:
config: BartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(
self, config: EnClapBartConfig, embed_tokens: Optional[nn.Embedding] = None
):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
clap_dim = config.d_clap
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_encodec = nn.ModuleList(
[
nn.Embedding(
math.ceil((config.encodec_vocab_size + 1) / 64) * 64,
config.d_model,
padding_idx=config.encodec_pad_token_id,
)
for _ in range(config.num_rvq)
]
)
self.clap_projection = nn.Linear(clap_dim, embed_dim)
self.embed_positions = BartLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList(
[BartEncoderLayer(config) for _ in range(config.encoder_layers)]
)
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
clap_embedding: Optional[torch.Tensor] = None,
encodec_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
if input_ids.ndim == 2: # This is effectively just input = input_ids
input = input_ids
input_ids = input_ids.view(-1, input_ids.shape[-1])
elif inputs_embeds is not None:
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
if input_ids.ndim == 2:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
elif input_ids.ndim == 3:
encodec_ids = torch.where(encodec_mask.unsqueeze(-1) > 0, input_ids, 0)
encodec_embeds = torch.zeros(
input_ids.shape[0], input_ids.shape[1], self.config.d_model
).to(self.device)
for i, embed in enumerate(self.embed_encodec):
encodec_embeds = encodec_embeds + embed(encodec_ids[..., i])
bart_ids = torch.where(encodec_mask == 0, input_ids[..., 0], 0)
bart_embeds = self.embed_tokens(bart_ids)
input_embeds = torch.where(
encodec_mask.unsqueeze(-1) > 0, encodec_embeds, bart_embeds
)
# Get CLAP embedding
if clap_embedding is not None:
clap_embedding = self.clap_projection(clap_embedding)
input_embeds[:, 0] = clap_embedding
inputs_embeds = input_embeds.to(self.device)
batch_size = input_ids.size(0)
embed_pos = self.embed_positions(input_ids).to(self.device)
embed_pos = torch.cat(
[
torch.zeros(batch_size, 1, self.config.d_model).to(self.device),
embed_pos[:, :-1],
],
dim=1,
)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(
hidden_states, p=self.dropout, training=self.training
)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (
dropout_probability < self.layerdrop
): # skip the layer
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(
head_mask[idx] if head_mask is not None else None
),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, encoder_states, all_attentions]
if v is not None
)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
)
class EnClapBartModel(BartModel):
def __init__(self, config: EnClapBartConfig):
super(BartModel, self).__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = EnClapBartEncoder(config, self.shared)
self.decoder = BartDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
clap_embedding: Optional[torch.Tensor] = None,
encodec_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqModelOutput]:
# different to other models, Bart automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
clap_embedding=clap_embedding,
encodec_mask=encodec_mask,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class EnClapBartForConditionalGeneration(BartForConditionalGeneration):
config_class = EnClapBartConfig
def __init__(self, config: EnClapBartConfig):
super(BartForConditionalGeneration, self).__init__(config)
self.model = EnClapBartModel(config)
self.register_buffer(
"final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))
)
self.lm_head = nn.Linear(
config.d_model, self.model.shared.num_embeddings, bias=False
)
self.mcm_heads = nn.ModuleList(
[
nn.Linear(config.d_model, config.encodec_vocab_size)
for _ in range(config.num_rvq)
]
)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
clap_embedding: Optional[torch.Tensor] = None,
encodec_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
mcm_labels: Optional[List[torch.LongTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if labels is not None:
if use_cache:
logger.warning(
"The `use_cache` argument is changed to `False` since `labels` is provided."
)
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
clap_embedding=clap_embedding,
encodec_mask=encodec_mask,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
mcm_loss = None
if mcm_labels is not None:
mcm_loss = 0.0
loss_fct = CrossEntropyLoss()
for i, mcm_head in enumerate(self.mcm_heads):
mcm_logits = mcm_head(outputs.encoder_last_hidden_state)
loss_scale = 1 / 2 ** (i + 1)
loss = loss_fct(
mcm_logits.view(-1, self.config.encodec_vocab_size),
mcm_labels[..., i].reshape(-1),
)
mcm_loss = mcm_loss + loss * loss_scale
lm_logits = self.lm_head(outputs[0])
lm_logits = lm_logits + self.final_logits_bias.to(lm_logits.device)
masked_lm_loss = None
if labels is not None:
labels = labels.to(lm_logits.device)
loss_fct = CrossEntropyLoss(label_smoothing=self.config.label_smoothing)
masked_lm_loss = loss_fct(
lm_logits.view(-1, self.config.vocab_size), labels.view(-1)
)
loss = None
if mcm_loss is None:
loss = masked_lm_loss
elif masked_lm_loss is None:
loss = mcm_loss
else:
mcm_loss = mcm_loss * self.config.mcm_loss_scale
loss = masked_lm_loss + mcm_loss
if not return_dict:
output = (lm_logits,) + outputs[1:]
return (
((masked_lm_loss,) + output) if masked_lm_loss is not None else output
)
return EnClapBartOutput(
loss=loss,
lm_loss=masked_lm_loss,
mcm_loss=mcm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)