# Experiment Config for each experiment output_dir: /data/jyk/aac_results/bart_large/audiocaps_3e5_gpu4_1115_2000 logging_dir: runs/tb_log logging_steps: 10 seed: 1115 train_file: /workspace/audiobart/csv/AudioCaps/train.csv validation_file: /workspace/audiobart/csv/AudioCaps/val.csv test_file: /workspace/audiobart/csv/AudioCaps/test.csv base_path: /data/jyk/aac_dataset/AudioCaps/encodec_16 clap_base_path: /data/jyk/aac_dataset/AudioCaps/clap_audio_fused tokenizer_name: facebook/bart-large # model_name_or_path: /workspace/audiobart/bart/model model_name_or_path: facebook/bart-large num_captions: 5 overwrite_output_dir: False # Training Configs # Basic Config max_encodec_length: 1022 only_encoder_epochs: 0 only_encodec_epochs: 0 clap_masking_prob: -1 encodec_masking_prob: 0.15 encodec_masking_length: 10 random_sampling: true num_train_epochs: 30 max_train_steps: null gradient_accumulation_steps: 1 per_device_train_batch_size: 64 per_device_eval_batch_size: 64 split_batches: true checkpointing_steps: epoch # 'epoch' to save for each epoch, or number of steps resume_from_checkpoint: null # Model & Generation Config max_source_length: 1024 max_target_length: 128 val_max_target_length: 50 num_beams: null pad_to_max_length: false num_subsampling: 0 # Training Hyperparameters learning_rate: 3e-5 # peak lr # Should be one of "linear", "cosine", "cosine_with_restarts", "polynomial", # "constant", "constant_with_warmpup", "inverse_sqrt", "reduce_lr_on_plateau", "two_stage_inverse_sqrt" lr_scheduler_type: inverse_sqrt # lr_scheduler_type: two_stage_inverse_sqrt weight_decay: 0.01 num_warmup_steps: 2000 max_grad_norm: 1.0 # Do not Change with_tracking: true report_to: all ignore_pad_token_for_loss: true preprocessing_num_workers: 32 use_slow_tokenizer: false overwrite_cache: false