from datasets import load_dataset from transformers import AutoTokenizer from modeling.audiobart import AudioBartForConditionalGeneration from data.collator import EncodecCollator from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments import numpy as np import torch import os os.environ["CUDA_VISIBLE_DEVICES"] = "4,5,6,7" if __name__=="__main__": model = AudioBartForConditionalGeneration.from_pretrained('bart/model') basepath = "/data/jyk/aac_dataset/clotho/encodec/" tokenizer = AutoTokenizer.from_pretrained('facebook/bart-large') data_files = {"train": "csv/train_short.csv", "validation": "csv/valid_short.csv"} raw_dataset = load_dataset("csv", data_files=data_files) def preprocessing(example): path = example['file_path'] encodec = np.load(os.path.join(basepath, path)) if encodec.shape[0]>1022: encodec = encodec[:1022, :] attention_mask = np.ones(encodec.shape[0]+2) target_text = tokenizer(text_target=example['caption']) return {'input_ids': encodec , 'attention_mask': attention_mask, 'labels': target_text['input_ids'], 'decoder_attention_mask': target_text['attention_mask']} train_dataset = raw_dataset['validation'].map(preprocessing) train_dataset.set_format("pt", columns=['input_ids', 'attention_mask', 'labels', 'decoder_attention_mask']) data_collator = EncodecCollator(tokenizer=tokenizer, model=model, return_tensors="pt") training_args = Seq2SeqTrainingArguments('summary_test', per_gpu_train_batch_size=20) trainer = Seq2SeqTrainer( model, training_args, train_dataset=train_dataset, eval_dataset=train_dataset, data_collator=data_collator, tokenizer=tokenizer ) trainer.train()