# This project uses the BART model from Facebook AI Research (FAIR) available at https://huggingface.co/facebook/bart-large-cnn under the Apache License 2.0. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fitz # PyMuPDF import gradio as gr from transformers import pipeline import re # 요약을 위한 모델 로드 summarizer = pipeline("summarization", model="facebook/bart-large-cnn") def extract_text_from_pdf(pdf_path): doc = fitz.open(pdf_path) text = "" for page_num in range(doc.page_count): page = doc.load_page(page_num) text += page.get_text("text") + "\n" return text def find_section(text, section_title): # 정규 표현식을 사용하여 섹션 제목을 찾습니다. pattern = re.compile(r'(?i)^.*{}.*$'.format(section_title), re.MULTILINE) matches = list(pattern.finditer(text)) if not matches: return None start_idx = matches[0].start() end_idx = text.find('\n\n', start_idx) if end_idx == -1: end_idx = len(text) section_text = text[start_idx:end_idx].strip() return section_text def summarize_section(text, section_title, max_length=150): try: section_text = find_section(text, section_title) if section_text: summary = summarizer(section_text, max_length=max_length, min_length=30, do_sample=False) return summary[0]['summary_text'] return f"Section '{section_title}' not found." except Exception as e: return f"Error processing section '{section_title}': {str(e)}" def process_pdf(file): try: text = extract_text_from_pdf(file.name) except Exception as e: return [f"Error extracting text from PDF: {str(e)}"] * 3 abstract_summary = summarize_section(text, "abstract") research_question_summary = summarize_section(text, "research question") results_summary = summarize_section(text, "results") return [abstract_summary, research_question_summary, results_summary] # Gradio 인터페이스 설정 interface = gr.Interface( fn=process_pdf, inputs=gr.File(label="Upload PDF"), outputs=[ gr.Textbox(label="Abstract Summary"), gr.Textbox(label="Research Question Summary"), gr.Textbox(label="Results Summary") ] ) # 인터페이스 실행 interface.launch()