Spaces:
Running
on
Zero
Running
on
Zero
General Update
Browse files- app.py +143 -29
- cpn.py +6 -2
- examples/bbbc039_test_00014.png +0 -0
- util.py +9 -9
app.py
CHANGED
@@ -1,24 +1,53 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
-
from util import imread, imsave,
|
4 |
import torch
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def torch_compile(*args, **kwargs):
|
7 |
def decorator(func):
|
8 |
return func
|
|
|
9 |
return decorator
|
10 |
|
|
|
11 |
torch.compile = torch_compile # temporary workaround
|
12 |
|
13 |
default_model = 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
@spaces.GPU
|
17 |
-
def predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
from cpn import CpnInterface
|
19 |
from prep import multi_norm
|
20 |
-
from celldetection import label_cmap
|
21 |
-
|
22 |
global default_model
|
23 |
assert isinstance(filename, str)
|
24 |
|
@@ -27,40 +56,125 @@ def predict(filename, model=None, device=None, reduce_labels=True):
|
|
27 |
device = 'cuda'
|
28 |
else:
|
29 |
device = 'cpu'
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
33 |
model=model,
|
34 |
device=device,
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
img = imread(filename)
|
39 |
print('Image:', img.dtype, img.shape, (img.min(), img.max()), flush=True)
|
40 |
if model is None or len(str(model)) <= 0:
|
41 |
model = default_model
|
42 |
|
43 |
img = multi_norm(img, 'cstm-mix') # TODO
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
|
|
50 |
vis_labels = label_cmap(labels)
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
+
from util import imread, imsave, copy_skimage_data
|
4 |
import torch
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
+
import numpy as np
|
7 |
+
from os.path import join
|
8 |
+
|
9 |
|
10 |
def torch_compile(*args, **kwargs):
|
11 |
def decorator(func):
|
12 |
return func
|
13 |
+
|
14 |
return decorator
|
15 |
|
16 |
+
|
17 |
torch.compile = torch_compile # temporary workaround
|
18 |
|
19 |
default_model = 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c'
|
20 |
+
default_score_thresh = .9
|
21 |
+
default_nms_thresh = np.round(np.pi / 10, 4)
|
22 |
+
default_samples = 128
|
23 |
+
default_order = 5
|
24 |
+
|
25 |
+
examples_dir = 'examples'
|
26 |
+
copy_skimage_data(examples_dir)
|
27 |
+
examples = [
|
28 |
+
[join(examples_dir, 'bbbc039_test_00014.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False,
|
29 |
+
default_nms_thresh, True, 64, True],
|
30 |
+
[join(examples_dir, 'coins.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False,
|
31 |
+
default_nms_thresh, True, 64, True],
|
32 |
+
[join(examples_dir, 'cell.png'), 'ginoro_CpnResNeXt101UNet-fbe875f1a3e5ce2c', False, default_score_thresh, False,
|
33 |
+
default_nms_thresh, True, 64, True],
|
34 |
+
]
|
35 |
|
36 |
|
37 |
@spaces.GPU
|
38 |
+
def predict(
|
39 |
+
filename, model=None,
|
40 |
+
enable_score_threshold=False, score_threshold=.9,
|
41 |
+
enable_nms_threshold=False, nms_threshold=0.3141592653589793,
|
42 |
+
enable_samples=False, samples=128,
|
43 |
+
use_label_channels=False,
|
44 |
+
enable_order=False, order=5,
|
45 |
+
device=None,
|
46 |
+
):
|
47 |
from cpn import CpnInterface
|
48 |
from prep import multi_norm
|
49 |
+
from celldetection import label_cmap, to_h5, data, __version__
|
50 |
+
|
51 |
global default_model
|
52 |
assert isinstance(filename, str)
|
53 |
|
|
|
56 |
device = 'cuda'
|
57 |
else:
|
58 |
device = 'cpu'
|
59 |
+
|
60 |
+
meta = dict(
|
61 |
+
cd_version=__version__,
|
62 |
+
filename=str(filename),
|
63 |
model=model,
|
64 |
device=device,
|
65 |
+
use_label_channels=use_label_channels,
|
66 |
+
enable_score_threshold=enable_score_threshold,
|
67 |
+
score_threshold=float(score_threshold),
|
68 |
+
enable_order=enable_order,
|
69 |
+
order=order,
|
70 |
+
enable_nms_threshold=enable_nms_threshold,
|
71 |
+
nms_threshold=float(nms_threshold),
|
72 |
+
)
|
73 |
+
print(meta, flush=True)
|
74 |
|
75 |
+
raw = img = imread(filename)
|
76 |
print('Image:', img.dtype, img.shape, (img.min(), img.max()), flush=True)
|
77 |
if model is None or len(str(model)) <= 0:
|
78 |
model = default_model
|
79 |
|
80 |
img = multi_norm(img, 'cstm-mix') # TODO
|
81 |
|
82 |
+
kw = {}
|
83 |
+
if enable_score_threshold:
|
84 |
+
kw['score_thresh'] = score_threshold
|
85 |
+
if enable_nms_threshold:
|
86 |
+
kw['nms_thresh'] = nms_threshold
|
87 |
+
if enable_order:
|
88 |
+
kw['order'] = order
|
89 |
+
if enable_samples:
|
90 |
+
kw['samples'] = samples
|
91 |
+
m = CpnInterface(model.strip(), device=device, **kw)
|
92 |
+
y = m(img, reduce_labels=not use_label_channels)
|
93 |
|
94 |
+
dst_h5 = '.'.join(filename.split('.')[:-1]) + '.h5'
|
95 |
+
to_h5(
|
96 |
+
dst_h5, inputs=img, **y,
|
97 |
+
attributes=dict(inputs=meta)
|
98 |
+
)
|
99 |
|
100 |
+
labels = y['labels']
|
101 |
vis_labels = label_cmap(labels)
|
102 |
+
|
103 |
+
dst_csv = '.'.join(filename.split('.')[:-1]) + '.csv'
|
104 |
+
data.labels2property_table(
|
105 |
+
labels,
|
106 |
+
"label", "area", "feret_diameter_max", "bbox", "centroid", "convex_area",
|
107 |
+
"eccentricity", "equivalent_diameter",
|
108 |
+
"extent", "filled_area", "major_axis_length",
|
109 |
+
"minor_axis_length", "orientation", "perimeter",
|
110 |
+
"solidity", "mean_intensity", "max_intensity", "min_intensity",
|
111 |
+
intensity_image=raw
|
112 |
+
).to_csv(dst_csv)
|
113 |
+
|
114 |
+
return vis_labels, img, dst_h5, dst_csv
|
115 |
+
|
116 |
+
|
117 |
+
with gr.Blocks(title='Cell Segmentation with Contour Proposal Networks') as app:
|
118 |
+
with gr.Row():
|
119 |
+
gr.Markdown("<center><strong><font size='7'>"
|
120 |
+
"Cell Segmentation with Contour Proposal Networks 🤗</font></strong></center>")
|
121 |
+
|
122 |
+
with gr.Row():
|
123 |
+
with gr.Column():
|
124 |
+
img = gr.components.Image(label="Upload Input Image", type="filepath", interactive=True,
|
125 |
+
value=examples[0][0])
|
126 |
+
with gr.Column():
|
127 |
+
model_name = gr.components.Textbox(label='Model Name', value=default_model, max_lines=1)
|
128 |
+
with gr.Row():
|
129 |
+
score_thresh_ck = gr.components.Checkbox(label="Use custom Score Threshold", value=False)
|
130 |
+
score_thresh = gr.components.Slider(minimum=0, maximum=1, label="Score Threshold",
|
131 |
+
value=default_score_thresh)
|
132 |
+
with gr.Row():
|
133 |
+
nms_thresh_ck = gr.components.Checkbox(label="Use custom NMS Threshold", value=False)
|
134 |
+
nms_thresh = gr.components.Slider(minimum=0, maximum=1, label="NMS Threshold", value=default_nms_thresh)
|
135 |
+
# with gr.Row():
|
136 |
+
# # The range of this would need to be model dependent
|
137 |
+
# order_ck = gr.components.Checkbox(label="Use custom Order", value=False)
|
138 |
+
# order = gr.components.Slider(minimum=0, maximum=1, label="Order", value=default_order)
|
139 |
+
with gr.Row():
|
140 |
+
samples_ck = gr.components.Checkbox(label="Use custom Sample Points", value=False)
|
141 |
+
samples = gr.components.Slider(minimum=8, maximum=256, label="Sample Points", value=default_samples)
|
142 |
+
with gr.Row():
|
143 |
+
channels = gr.components.Checkbox(label="Allow overlapping objects", value=True)
|
144 |
+
with gr.Row():
|
145 |
+
clr = gr.Button('Reset')
|
146 |
+
btn = gr.Button('Run')
|
147 |
+
with gr.Row():
|
148 |
+
with gr.Column():
|
149 |
+
out_img = gr.Image(label="Processed Image")
|
150 |
+
with gr.Column():
|
151 |
+
out_vis = gr.Image(label="Label Image (random colors, transparent overlap)")
|
152 |
+
with gr.Row():
|
153 |
+
out_h5 = gr.File(label="Download Results as HDF5 File")
|
154 |
+
out_csv = gr.File(label="Download Properties as CSV File")
|
155 |
+
|
156 |
+
with gr.Row():
|
157 |
+
gr.Examples(
|
158 |
+
fn=predict,
|
159 |
+
examples=examples,
|
160 |
+
inputs=[img, model_name, score_thresh_ck, score_thresh, nms_thresh_ck, nms_thresh, samples_ck, samples,
|
161 |
+
channels],
|
162 |
+
outputs=[out_vis, out_img, out_h5, out_csv],
|
163 |
+
cache_examples=True,
|
164 |
+
batch=False
|
165 |
+
)
|
166 |
+
|
167 |
+
btn.click(
|
168 |
+
predict,
|
169 |
+
inputs=[img, model_name, score_thresh_ck, score_thresh, nms_thresh_ck, nms_thresh, samples_ck, samples,
|
170 |
+
channels],
|
171 |
+
outputs=[out_vis, out_img, out_h5, out_csv]
|
172 |
+
)
|
173 |
+
clr.click(
|
174 |
+
lambda: (
|
175 |
+
None, default_score_thresh, default_nms_thresh, False, False, None, None, None, False, default_samples),
|
176 |
+
inputs=[],
|
177 |
+
outputs=[img, score_thresh, nms_thresh, score_thresh_ck, nms_thresh_ck, out_img, out_h5, out_vis, samples_ck,
|
178 |
+
samples]
|
179 |
+
)
|
180 |
+
app.launch()
|
cpn.py
CHANGED
@@ -32,10 +32,14 @@ def contours2labels(contours, size, overlap=False, max_iter=999):
|
|
32 |
|
33 |
|
34 |
class CpnInterface:
|
35 |
-
def __init__(self, model, device=None):
|
36 |
self.device = ('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
37 |
-
|
|
|
|
|
|
|
38 |
self.model.eval()
|
|
|
39 |
self.tile_size = 1664
|
40 |
self.overlap = 384
|
41 |
|
|
|
32 |
|
33 |
|
34 |
class CpnInterface:
|
35 |
+
def __init__(self, model, device=None, **kwargs):
|
36 |
self.device = ('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
|
37 |
+
model = cd.resolve_model(model, **kwargs)
|
38 |
+
if not isinstance(model, cd.models.LitCpn):
|
39 |
+
model = cd.models.LitCpn(model)
|
40 |
+
self.model = model.to(device)
|
41 |
self.model.eval()
|
42 |
+
self.model.requires_grad_(False)
|
43 |
self.tile_size = 1664
|
44 |
self.overlap = 384
|
45 |
|
examples/bbbc039_test_00014.png
ADDED
util.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
from imageio.v2 import imread as _imread
|
|
|
2 |
import tifffile as tif
|
3 |
|
4 |
-
__all__ = ['imread', 'imsave', '
|
5 |
|
6 |
|
7 |
def imread(filename):
|
@@ -14,14 +15,13 @@ def imsave(filename, img, compression="zlib"):
|
|
14 |
tif.imwrite(filename, img, compression=compression)
|
15 |
|
16 |
|
17 |
-
def
|
18 |
from skimage import data
|
|
|
19 |
from os.path import dirname, join, isfile
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
examples.append([f, default_model])
|
26 |
-
if len(examples):
|
27 |
-
return examples
|
|
|
1 |
from imageio.v2 import imread as _imread
|
2 |
+
from shutil import copy2
|
3 |
import tifffile as tif
|
4 |
|
5 |
+
__all__ = ['imread', 'imsave', 'copy_skimage_data']
|
6 |
|
7 |
|
8 |
def imread(filename):
|
|
|
15 |
tif.imwrite(filename, img, compression=compression)
|
16 |
|
17 |
|
18 |
+
def copy_skimage_data(dst='examples'):
|
19 |
from skimage import data
|
20 |
+
from os import makedirs
|
21 |
from os.path import dirname, join, isfile
|
22 |
+
from glob import glob
|
23 |
|
24 |
+
makedirs(dst, exist_ok=True)
|
25 |
+
|
26 |
+
for f in glob(join(dirname(data.__file__), '*.png')):
|
27 |
+
copy2(f, dst)
|
|
|
|
|
|