File size: 20,295 Bytes
ede32b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import copy
import random

import torch
import torch.nn as nn
from transformers import CLIPTokenizer
from typing import Any, List, Optional, Union

class TokenizerWrapper:
    """Tokenizer wrapper for CLIPTokenizer. Only support CLIPTokenizer
    currently. This wrapper is modified from https://github.com/huggingface/dif
    fusers/blob/e51f19aee82c8dd874b715a09dbc521d88835d68/src/diffusers/loaders.
    py#L358  # noqa.

    Args:
        from_pretrained (Union[str, os.PathLike], optional): The *model id*
            of a pretrained model or a path to a *directory* containing
            model weights and config. Defaults to None.
        from_config (Union[str, os.PathLike], optional): The *model id*
            of a pretrained model or a path to a *directory* containing
            model weights and config. Defaults to None.

        *args, **kwargs: If `from_pretrained` is passed, *args and **kwargs
            will be passed to `from_pretrained` function. Otherwise, *args
            and **kwargs will be used to initialize the model by
            `self._module_cls(*args, **kwargs)`.
    """

    def __init__(self, tokenizer: CLIPTokenizer):
        self.wrapped = tokenizer
        self.token_map = {}

    def __getattr__(self, name: str) -> Any:
        if name in self.__dict__:
            return getattr(self, name)
        #if name == "wrapped":
        #    return getattr(self, 'wrapped')#super().__getattr__("wrapped")

        try:
            return getattr(self.wrapped, name)
        except AttributeError:
            raise AttributeError(
                "'name' cannot be found in both "
                f"'{self.__class__.__name__}' and "
                f"'{self.__class__.__name__}.tokenizer'."
            )

    def try_adding_tokens(self, tokens: Union[str, List[str]], *args, **kwargs):
        """Attempt to add tokens to the tokenizer.

        Args:
            tokens (Union[str, List[str]]): The tokens to be added.
        """
        num_added_tokens = self.wrapped.add_tokens(tokens, *args, **kwargs)
        assert num_added_tokens != 0, (
            f"The tokenizer already contains the token {tokens}. Please pass "
            "a different `placeholder_token` that is not already in the "
            "tokenizer."
        )

    def get_token_info(self, token: str) -> dict:
        """Get the information of a token, including its start and end index in
        the current tokenizer.

        Args:
            token (str): The token to be queried.

        Returns:
            dict: The information of the token, including its start and end
                index in current tokenizer.
        """
        token_ids = self.__call__(token).input_ids
        start, end = token_ids[1], token_ids[-2] + 1
        return {"name": token, "start": start, "end": end}

    def add_placeholder_token(self, placeholder_token: str, *args, num_vec_per_token: int = 1, **kwargs):
        """Add placeholder tokens to the tokenizer.

        Args:
            placeholder_token (str): The placeholder token to be added.
            num_vec_per_token (int, optional): The number of vectors of
                the added placeholder token.
            *args, **kwargs: The arguments for `self.wrapped.add_tokens`.
        """
        output = []
        if num_vec_per_token == 1:
            self.try_adding_tokens(placeholder_token, *args, **kwargs)
            output.append(placeholder_token)
        else:
            output = []
            for i in range(num_vec_per_token):
                ith_token = placeholder_token + f"_{i}"
                self.try_adding_tokens(ith_token, *args, **kwargs)
                output.append(ith_token)

        for token in self.token_map:
            if token in placeholder_token:
                raise ValueError(
                    f"The tokenizer already has placeholder token {token} "
                    f"that can get confused with {placeholder_token} "
                    "keep placeholder tokens independent"
                )
        self.token_map[placeholder_token] = output

    def replace_placeholder_tokens_in_text(
        self, text: Union[str, List[str]], vector_shuffle: bool = False, prop_tokens_to_load: float = 1.0
    ) -> Union[str, List[str]]:
        """Replace the keywords in text with placeholder tokens. This function
        will be called in `self.__call__` and `self.encode`.

        Args:
            text (Union[str, List[str]]): The text to be processed.
            vector_shuffle (bool, optional): Whether to shuffle the vectors.
                Defaults to False.
            prop_tokens_to_load (float, optional): The proportion of tokens to
                be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0.

        Returns:
            Union[str, List[str]]: The processed text.
        """
        if isinstance(text, list):
            output = []
            for i in range(len(text)):
                output.append(self.replace_placeholder_tokens_in_text(text[i], vector_shuffle=vector_shuffle))
            return output

        for placeholder_token in self.token_map:
            if placeholder_token in text:
                tokens = self.token_map[placeholder_token]
                tokens = tokens[: 1 + int(len(tokens) * prop_tokens_to_load)]
                if vector_shuffle:
                    tokens = copy.copy(tokens)
                    random.shuffle(tokens)
                text = text.replace(placeholder_token, " ".join(tokens))
        return text

    def replace_text_with_placeholder_tokens(self, text: Union[str, List[str]]) -> Union[str, List[str]]:
        """Replace the placeholder tokens in text with the original keywords.
        This function will be called in `self.decode`.

        Args:
            text (Union[str, List[str]]): The text to be processed.

        Returns:
            Union[str, List[str]]: The processed text.
        """
        if isinstance(text, list):
            output = []
            for i in range(len(text)):
                output.append(self.replace_text_with_placeholder_tokens(text[i]))
            return output

        for placeholder_token, tokens in self.token_map.items():
            merged_tokens = " ".join(tokens)
            if merged_tokens in text:
                text = text.replace(merged_tokens, placeholder_token)
        return text

    def __call__(
        self,
        text: Union[str, List[str]],
        *args,
        vector_shuffle: bool = False,
        prop_tokens_to_load: float = 1.0,
        **kwargs,
    ):
        """The call function of the wrapper.

        Args:
            text (Union[str, List[str]]): The text to be tokenized.
            vector_shuffle (bool, optional): Whether to shuffle the vectors.
                Defaults to False.
            prop_tokens_to_load (float, optional): The proportion of tokens to
                be loaded. If 1.0, all tokens will be loaded. Defaults to 1.0
            *args, **kwargs: The arguments for `self.wrapped.__call__`.
        """
        replaced_text = self.replace_placeholder_tokens_in_text(
            text, vector_shuffle=vector_shuffle, prop_tokens_to_load=prop_tokens_to_load
        )

        return self.wrapped.__call__(replaced_text, *args, **kwargs)

    def encode(self, text: Union[str, List[str]], *args, **kwargs):
        """Encode the passed text to token index.

        Args:
            text (Union[str, List[str]]): The text to be encode.
            *args, **kwargs: The arguments for `self.wrapped.__call__`.
        """
        replaced_text = self.replace_placeholder_tokens_in_text(text)
        return self.wrapped(replaced_text, *args, **kwargs)

    def decode(self, token_ids, return_raw: bool = False, *args, **kwargs) -> Union[str, List[str]]:
        """Decode the token index to text.

        Args:
            token_ids: The token index to be decoded.
            return_raw: Whether keep the placeholder token in the text.
                Defaults to False.
            *args, **kwargs: The arguments for `self.wrapped.decode`.

        Returns:
            Union[str, List[str]]: The decoded text.
        """
        text = self.wrapped.decode(token_ids, *args, **kwargs)
        if return_raw:
            return text
        replaced_text = self.replace_text_with_placeholder_tokens(text)
        return replaced_text

    def __repr__(self):
        """The representation of the wrapper."""
        s = super().__repr__()
        prefix = f"Wrapped Module Class: {self._module_cls}\n"
        prefix += f"Wrapped Module Name: {self._module_name}\n"
        if self._from_pretrained:
            prefix += f"From Pretrained: {self._from_pretrained}\n"
        s = prefix + s
        return s
    

class EmbeddingLayerWithFixes(nn.Module):
    """The revised embedding layer to support external embeddings. This design
    of this class is inspired by https://github.com/AUTOMATIC1111/stable-
    diffusion-webui/blob/22bcc7be428c94e9408f589966c2040187245d81/modules/sd_hi
    jack.py#L224  # noqa.

    Args:
        wrapped (nn.Emebdding): The embedding layer to be wrapped.
        external_embeddings (Union[dict, List[dict]], optional): The external
            embeddings added to this layer. Defaults to None.
    """

    def __init__(self, wrapped: nn.Embedding, external_embeddings: Optional[Union[dict, List[dict]]] = None):
        super().__init__()
        self.wrapped = wrapped
        self.num_embeddings = wrapped.weight.shape[0]

        self.external_embeddings = []
        if external_embeddings:
            self.add_embeddings(external_embeddings)

        self.trainable_embeddings = nn.ParameterDict()

    @property
    def weight(self):
        """Get the weight of wrapped embedding layer."""
        return self.wrapped.weight

    def check_duplicate_names(self, embeddings: List[dict]):
        """Check whether duplicate names exist in list of 'external
        embeddings'.

        Args:
            embeddings (List[dict]): A list of embedding to be check.
        """
        names = [emb["name"] for emb in embeddings]
        assert len(names) == len(set(names)), (
            "Found duplicated names in 'external_embeddings'. Name list: " f"'{names}'"
        )

    def check_ids_overlap(self, embeddings):
        """Check whether overlap exist in token ids of 'external_embeddings'.

        Args:
            embeddings (List[dict]): A list of embedding to be check.
        """
        ids_range = [[emb["start"], emb["end"], emb["name"]] for emb in embeddings]
        ids_range.sort()  # sort by 'start'
        # check if 'end' has overlapping
        for idx in range(len(ids_range) - 1):
            name1, name2 = ids_range[idx][-1], ids_range[idx + 1][-1]
            assert ids_range[idx][1] <= ids_range[idx + 1][0], (
                f"Found ids overlapping between embeddings '{name1}' " f"and '{name2}'."
            )

    def add_embeddings(self, embeddings: Optional[Union[dict, List[dict]]]):
        """Add external embeddings to this layer.

        Use case:

        >>> 1. Add token to tokenizer and get the token id.
        >>> tokenizer = TokenizerWrapper('openai/clip-vit-base-patch32')
        >>> # 'how much' in kiswahili
        >>> tokenizer.add_placeholder_tokens('ngapi', num_vec_per_token=4)
        >>>
        >>> 2. Add external embeddings to the model.
        >>> new_embedding = {
        >>>     'name': 'ngapi',  # 'how much' in kiswahili
        >>>     'embedding': torch.ones(1, 15) * 4,
        >>>     'start': tokenizer.get_token_info('kwaheri')['start'],
        >>>     'end': tokenizer.get_token_info('kwaheri')['end'],
        >>>     'trainable': False  # if True, will registry as a parameter
        >>> }
        >>> embedding_layer = nn.Embedding(10, 15)
        >>> embedding_layer_wrapper = EmbeddingLayerWithFixes(embedding_layer)
        >>> embedding_layer_wrapper.add_embeddings(new_embedding)
        >>>
        >>> 3. Forward tokenizer and embedding layer!
        >>> input_text = ['hello, ngapi!', 'hello my friend, ngapi?']
        >>> input_ids = tokenizer(
        >>>     input_text, padding='max_length', truncation=True,
        >>>     return_tensors='pt')['input_ids']
        >>> out_feat = embedding_layer_wrapper(input_ids)
        >>>
        >>> 4. Let's validate the result!
        >>> assert (out_feat[0, 3: 7] == 2.3).all()
        >>> assert (out_feat[2, 5: 9] == 2.3).all()

        Args:
            embeddings (Union[dict, list[dict]]): The external embeddings to
                be added. Each dict must contain the following 4 fields: 'name'
                (the name of this embedding), 'embedding' (the embedding
                tensor), 'start' (the start token id of this embedding), 'end'
                (the end token id of this embedding). For example:
                `{name: NAME, start: START, end: END, embedding: torch.Tensor}`
        """
        if isinstance(embeddings, dict):
            embeddings = [embeddings]

        self.external_embeddings += embeddings
        self.check_duplicate_names(self.external_embeddings)
        self.check_ids_overlap(self.external_embeddings)

        # set for trainable
        added_trainable_emb_info = []
        for embedding in embeddings:
            trainable = embedding.get("trainable", False)
            if trainable:
                name = embedding["name"]
                embedding["embedding"] = torch.nn.Parameter(embedding["embedding"])
                self.trainable_embeddings[name] = embedding["embedding"]
                added_trainable_emb_info.append(name)

        added_emb_info = [emb["name"] for emb in embeddings]
        added_emb_info = ", ".join(added_emb_info)
        print(f"Successfully add external embeddings: {added_emb_info}.", "current")

        if added_trainable_emb_info:
            added_trainable_emb_info = ", ".join(added_trainable_emb_info)
            print("Successfully add trainable external embeddings: " f"{added_trainable_emb_info}", "current")

    def replace_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
        """Replace external input ids to 0.

        Args:
            input_ids (torch.Tensor): The input ids to be replaced.

        Returns:
            torch.Tensor: The replaced input ids.
        """
        input_ids_fwd = input_ids.clone()
        input_ids_fwd[input_ids_fwd >= self.num_embeddings] = 0
        return input_ids_fwd

    def replace_embeddings(
        self, input_ids: torch.Tensor, embedding: torch.Tensor, external_embedding: dict
    ) -> torch.Tensor:
        """Replace external embedding to the embedding layer. Noted that, in
        this function we use `torch.cat` to avoid inplace modification.

        Args:
            input_ids (torch.Tensor): The original token ids. Shape like
                [LENGTH, ].
            embedding (torch.Tensor): The embedding of token ids after
                `replace_input_ids` function.
            external_embedding (dict): The external embedding to be replaced.

        Returns:
            torch.Tensor: The replaced embedding.
        """
        new_embedding = []

        name = external_embedding["name"]
        start = external_embedding["start"]
        end = external_embedding["end"]
        target_ids_to_replace = [i for i in range(start, end)]
        ext_emb = external_embedding["embedding"].to(embedding.device)

        # do not need to replace
        if not (input_ids == start).any():
            return embedding

        # start replace
        s_idx, e_idx = 0, 0
        while e_idx < len(input_ids):
            if input_ids[e_idx] == start:
                if e_idx != 0:
                    # add embedding do not need to replace
                    new_embedding.append(embedding[s_idx:e_idx])

                # check if the next embedding need to replace is valid
                actually_ids_to_replace = [int(i) for i in input_ids[e_idx : e_idx + end - start]]
                assert actually_ids_to_replace == target_ids_to_replace, (
                    f"Invalid 'input_ids' in position: {s_idx} to {e_idx}. "
                    f"Expect '{target_ids_to_replace}' for embedding "
                    f"'{name}' but found '{actually_ids_to_replace}'."
                )

                new_embedding.append(ext_emb)

                s_idx = e_idx + end - start
                e_idx = s_idx + 1
            else:
                e_idx += 1

        if e_idx == len(input_ids):
            new_embedding.append(embedding[s_idx:e_idx])

        return torch.cat(new_embedding, dim=0)

    def forward(self, input_ids: torch.Tensor, external_embeddings: Optional[List[dict]] = None, out_dtype = None):
        """The forward function.

        Args:
            input_ids (torch.Tensor): The token ids shape like [bz, LENGTH] or
                [LENGTH, ].
            external_embeddings (Optional[List[dict]]): The external
                embeddings. If not passed, only `self.external_embeddings`
                will be used.  Defaults to None.

        input_ids: shape like [bz, LENGTH] or [LENGTH].
        """

        assert input_ids.ndim in [1, 2]
        if input_ids.ndim == 1:
            input_ids = input_ids.unsqueeze(0)

        if external_embeddings is None and not self.external_embeddings:
            return self.wrapped(input_ids, out_dtype=out_dtype)

        input_ids_fwd = self.replace_input_ids(input_ids)
        inputs_embeds = self.wrapped(input_ids_fwd)

        vecs = []

        if external_embeddings is None:
            external_embeddings = []
        elif isinstance(external_embeddings, dict):
            external_embeddings = [external_embeddings]
        embeddings = self.external_embeddings + external_embeddings

        for input_id, embedding in zip(input_ids, inputs_embeds):
            new_embedding = embedding
            for external_embedding in embeddings:
                new_embedding = self.replace_embeddings(input_id, new_embedding, external_embedding)
            vecs.append(new_embedding)

        return torch.stack(vecs).to(out_dtype)



def add_tokens(
    tokenizer, text_encoder, placeholder_tokens: list, initialize_tokens: list = None, num_vectors_per_token: int = 1
):
    """Add token for training.

    # TODO: support add tokens as dict, then we can load pretrained tokens.
    """
    if initialize_tokens is not None:
        assert len(initialize_tokens) == len(
            placeholder_tokens
        ), "placeholder_token should be the same length as initialize_token"
    for ii in range(len(placeholder_tokens)):
        tokenizer.add_placeholder_token(placeholder_tokens[ii], num_vec_per_token=num_vectors_per_token)

    # text_encoder.set_embedding_layer()
    embedding_layer = text_encoder.text_model.embeddings.token_embedding
    text_encoder.text_model.embeddings.token_embedding = EmbeddingLayerWithFixes(embedding_layer)
    embedding_layer = text_encoder.text_model.embeddings.token_embedding

    assert embedding_layer is not None, (
        "Do not support get embedding layer for current text encoder. " "Please check your configuration."
    )
    initialize_embedding = []
    if initialize_tokens is not None:
        for ii in range(len(placeholder_tokens)):
            init_id = tokenizer(initialize_tokens[ii]).input_ids[1]
            temp_embedding = embedding_layer.weight[init_id]
            initialize_embedding.append(temp_embedding[None, ...].repeat(num_vectors_per_token, 1))
    else:
        for ii in range(len(placeholder_tokens)):
            init_id = tokenizer("a").input_ids[1]
            temp_embedding = embedding_layer.weight[init_id]
            len_emb = temp_embedding.shape[0]
            init_weight = (torch.rand(num_vectors_per_token, len_emb) - 0.5) / 2.0
            initialize_embedding.append(init_weight)

    # initialize_embedding  = torch.cat(initialize_embedding,dim=0)

    token_info_all = []
    for ii in range(len(placeholder_tokens)):
        token_info = tokenizer.get_token_info(placeholder_tokens[ii])
        token_info["embedding"] = initialize_embedding[ii]
        token_info["trainable"] = True
        token_info_all.append(token_info)
    embedding_layer.add_embeddings(token_info_all)