Spaces:
Configuration error
Configuration error
import torch.nn.functional as F | |
import comfy | |
from .model_patch import add_model_patch_option, patch_model_function_wrapper | |
class RAUNet: | |
def INPUT_TYPES(s): | |
return {"required": | |
{ | |
"model": ("MODEL",), | |
"du_start": ("INT", {"default": 0, "min": 0, "max": 10000}), | |
"du_end": ("INT", {"default": 4, "min": 0, "max": 10000}), | |
"xa_start": ("INT", {"default": 4, "min": 0, "max": 10000}), | |
"xa_end": ("INT", {"default": 10, "min": 0, "max": 10000}), | |
}, | |
} | |
CATEGORY = "inpaint" | |
RETURN_TYPES = ("MODEL",) | |
RETURN_NAMES = ("model",) | |
FUNCTION = "model_update" | |
def model_update(self, model, du_start, du_end, xa_start, xa_end): | |
model = model.clone() | |
add_raunet_patch(model, | |
du_start, | |
du_end, | |
xa_start, | |
xa_end) | |
return (model,) | |
# This is main patch function | |
def add_raunet_patch(model, du_start, du_end, xa_start, xa_end): | |
def raunet_forward(model, x, timesteps, transformer_options, control): | |
if 'model_patch' not in transformer_options: | |
print("RAUNet: 'model_patch' not in transformer_options, skip") | |
return | |
mp = transformer_options['model_patch'] | |
is_SDXL = mp['SDXL'] | |
if is_SDXL and type(model.input_blocks[6][0]) != comfy.ldm.modules.diffusionmodules.openaimodel.Downsample: | |
print('RAUNet: model is SDXL, but input[6] != Downsample, skip') | |
return | |
if not is_SDXL and type(model.input_blocks[3][0]) != comfy.ldm.modules.diffusionmodules.openaimodel.Downsample: | |
print('RAUNet: model is not SDXL, but input[3] != Downsample, skip') | |
return | |
if 'raunet' not in mp: | |
print('RAUNet: "raunet" not in model_patch options, skip') | |
return | |
if is_SDXL: | |
block = model.input_blocks[6][0] | |
else: | |
block = model.input_blocks[3][0] | |
total_steps = mp['total_steps'] | |
step = mp['step'] | |
ro = mp['raunet'] | |
du_start = ro['du_start'] | |
du_end = ro['du_end'] | |
if step >= du_start and step < du_end: | |
block.op.stride = (4, 4) | |
block.op.padding = (2, 2) | |
block.op.dilation = (2, 2) | |
else: | |
block.op.stride = (2, 2) | |
block.op.padding = (1, 1) | |
block.op.dilation = (1, 1) | |
patch_model_function_wrapper(model, raunet_forward) | |
model.set_model_input_block_patch(in_xattn_patch) | |
model.set_model_output_block_patch(out_xattn_patch) | |
to = add_model_patch_option(model) | |
mp = to['model_patch'] | |
if 'raunet' not in mp: | |
mp['raunet'] = {} | |
ro = mp['raunet'] | |
ro['du_start'] = du_start | |
ro['du_end'] = du_end | |
ro['xa_start'] = xa_start | |
ro['xa_end'] = xa_end | |
def in_xattn_patch(h, transformer_options): | |
# both SDXL and SD15 = (input,4) | |
if transformer_options["block"] != ("input", 4): | |
# wrong block | |
return h | |
if 'model_patch' not in transformer_options: | |
print("RAUNet (i-x-p): 'model_patch' not in transformer_options") | |
return h | |
mp = transformer_options['model_patch'] | |
if 'raunet' not in mp: | |
print("RAUNet (i-x-p): 'raunet' not in model_patch options") | |
return h | |
step = mp['step'] | |
ro = mp['raunet'] | |
xa_start = ro['xa_start'] | |
xa_end = ro['xa_end'] | |
if step < xa_start or step >= xa_end: | |
return h | |
h = F.avg_pool2d(h, kernel_size=(2,2)) | |
return h | |
def out_xattn_patch(h, hsp, transformer_options): | |
if 'model_patch' not in transformer_options: | |
print("RAUNet (o-x-p): 'model_patch' not in transformer_options") | |
return h, hsp | |
mp = transformer_options['model_patch'] | |
if 'raunet' not in mp: | |
print("RAUNet (o-x-p): 'raunet' not in model_patch options") | |
return h | |
step = mp['step'] | |
is_SDXL = mp['SDXL'] | |
ro = mp['raunet'] | |
xa_start = ro['xa_start'] | |
xa_end = ro['xa_end'] | |
if is_SDXL: | |
if transformer_options["block"] != ("output", 5): | |
# wrong block | |
return h, hsp | |
else: | |
if transformer_options["block"] != ("output", 8): | |
# wrong block | |
return h, hsp | |
if step < xa_start or step >= xa_end: | |
return h, hsp | |
#error in hidiffusion codebase, size * 2 for particular sizes only | |
#re_size = (int(h.shape[-2] * 2), int(h.shape[-1] * 2)) | |
re_size = (hsp.shape[-2], hsp.shape[-1]) | |
h = F.interpolate(h, size=re_size, mode='bicubic') | |
return h, hsp | |