import json import os import os.path as osp import gradio as gr import numpy as np import gradio as gr def load_json(load_dir_path, json_file_name): load_path = os.path.join(load_dir_path, json_file_name) if not os.path.exists(load_path): return None with open(load_path, 'r', encoding='utf-8') as f: obj_serializable = json.load(f) return obj_serializable def load_results_recaption(save_path, model="gpt-3.5-turbo-0125"): result_list = load_json(save_path, f'final_results-{model}.json') if result_list is not None: result_list = result_list['result_list'] if result_list is None: result_list = load_json(save_path, 'inference_results.json') return result_list plava_theme = gr.themes.Monochrome( text_size="sm", spacing_size="sm", primary_hue=gr.themes.Color(c100="#f5f5f5", c200="#e5e5e5", c300="#d4d4d4", c400="#a3a3a3", c50="#fafafa", c500="#737373", c600="#525252", c700="#404040", c800="#262626", c900="#171717", c950="#000000"), secondary_hue=gr.themes.Color(c100="#f5f5f5", c200="#e5e5e5", c300="#d4d4d4", c400="#a3a3a3", c50="#fafafa", c500="#737373", c600="#525252", c700="#404040", c800="#262626", c900="#171717", c950="#000000"), neutral_hue=gr.themes.Color(c100="#f5f5f5", c200="#e5e5e5", c300="#d4d4d4", c400="#a3a3a3", c50="#fafafa", c500="#737373", c600="#525252", c700="#404040", c800="#262626", c900="#171717", c950="#000000"), ).set( background_fill_primary_dark='*primary_950', background_fill_secondary_dark='*neutral_950' ) load_results_funcs = [ load_results_recaption, ] recaption_root_dir = "recaption_results" local_video_root_dir = "DATAS/Recaption/Inter4K/60fps/UHD" remote_video_root_dir ="https://huggingface.co/datasets/ermu2001/Inter4kPlavaRecaption/resolve/main/DATAS/Recaption/Inter4K/60fps/UHD" def show(result_list_first, result_list_second, result_index): sample2index_second = {} for i, result in enumerate(result_list_second): if 'video_path' not in result: continue question = result['question'] if 'question' in result else '' video_path = result['video_path'] samplehash = question + '--' +video_path sample2index_second[samplehash] = i info = result_list_first[result_index] info_str_first = json.dumps(info, indent=4, ensure_ascii=False) video_path = info['video_path'] question = info['question'] if 'question' in info else '' samplehash = question + '--' +video_path if samplehash in sample2index_second: info = result_list_second[sample2index_second[samplehash]] info_str_second = json.dumps(info, indent=4, ensure_ascii=False) else: info_str_second = f"NO {video_path} IN THE SECOND RESULT DIR" video_path = video_path.replace(local_video_root_dir, remote_video_root_dir) return video_path, info_str_first, info_str_second def reload_results_dirs(): result_dirs = [] # load result dir paths for dirpath, dirnames, filenames in os.walk(recaption_root_dir): if len(dirnames) == 0 and len(filenames) != 0: result_dirs.append(dirpath) return gr.Dropdown(result_dirs, value=result_dirs[0]) def reload_results(result_dir): # if isinstance(result_dir, list): # result_dir = result_dir[0] if result_dir is None or not osp.exists(result_dir): return None for fn in load_results_funcs: result_list = fn(result_dir) if result_list is not None: np.random.shuffle(result_list) break result_index = gr.Slider(0, len(result_list), step=1) return result_list, result_index with gr.Blocks(title="PLAVA RESULTS", theme=plava_theme) as demo: result_list_first = gr.State() result_list_second = gr.State() with gr.Row(): with gr.Column(): gr.Markdown("# Showing off Model's Outputs.") gr.Markdown( "You can find all our results, including:\n" "1. results of Captioned Inter4k\n" "2. results of Different Benchmark inference outputs.\n" "Choose a directory to see the different output variant.\n" "You can also choose secondary directory (as long as they are from the same dataset.) to compare on the results.\n" ) with gr.Row(): with gr.Column(): show_video = gr.Video(interactive=False) with gr.Column(): button_reload = gr.Button(value='Reload From The Evaluation/Inference Root Directory') result_index = gr.Slider(0, 0, step=1, label="Index") result_dir_first = gr.Dropdown(label='Test Result Path') info_first = gr.Text(interactive=False, label='Detailed Output Information') result_dir_second = gr.Dropdown(label='Test Result Path') info_second = gr.Text(interactive=False, label='Detailed Output Information') button_reload.click(reload_results_dirs, [], [result_dir_first]) button_reload.click(reload_results_dirs, [], [result_dir_second]) result_dir_first.change(reload_results, [result_dir_first], [result_list_first, result_index]) result_dir_second.change(reload_results, [result_dir_second], [result_list_second, result_index]) result_index.change(show, [result_list_first, result_list_second, result_index], [show_video, info_first, info_second]) demo.load(reload_results_dirs, [], [result_dir_first]) demo.load(reload_results_dirs, [], [result_dir_second]) demo.launch()