Practica1_xRay / app.py
ermunom's picture
Create app.py
3c25e7f
raw
history blame contribute delete
634 Bytes
from fastai.vision.all import *
import gradio as gr
# Cargamos el learner
learn = load_learner('export.pkl')
# Definimos las etiquetas de nuestro modelo
labels = learn.dls.vocab
# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
# Creamos la interfaz y la lanzamos.
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=3),examples=['buildings.jpg','forest.jpg']).launch(share=True)